Have a personal or library account? Click to login
Real Functions in Stochastic Dependence Cover
Open Access
|Nov 2019

References

  1. [1] ADÁMEK, J.: Theory of Mathematical Structures. Reidel, Dordrecht, 1983.
  2. [2] BABICOVÁ, D.: Probability integral as a linearization, Tatra Mt. Math. Publ. 72 (2018), 1–15.10.2478/tmmp-2018-0017
  3. [3] BARNETT, J. H.: Origins of Boolean algebra in the logic of classes: George Boole, John Venn, and C. S. Pierce, www.maa.org/publications/periodicals/convergence
  4. [4] BUGAJSKI, S.: Statistical maps I. Basic properties, Math. Slovaca 51 (2001), 321–342.
  5. [5] _______ Statistical maps II. Operational random variables, Math. Slovaca 51 (2001), 343–361.
  6. [6] CHOVANEC, F.—KÔPKA, F.: D-posets.In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures (K. Engesser et al., eds.), Elsevier, Amsterdam, 2007, pp. 367–428.10.1016/B978-044452870-4/50031-5
  7. [7] CHOVANEC, F.—DROBNÁ, E.—KÔPKA, F.—NÁNÁSIOVÁ, O.: Conditional states and independence in D-posets, Soft Comput. 14 (2014), 1027–1034.10.1007/s00500-009-0487-0
  8. [8] DI NOLA, A.—DVUREČENSKIJ, A.: Product MV-algebras, Multi. Val. Logic 6 (2001), 193–215.
  9. [9] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: New Trends in Quantum Structures.In: Mathematics and its Applications, Vol. 516, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000.10.1007/978-94-017-2422-7
  10. [10] _______ Conditional probability on σ-MV-algebras, Fuzzy Sets Syst. 155 (2005), 102–118.10.1016/j.fss.2005.05.015
  11. [11] ELIAŠ, P.—FRIČ, R.: Factorization of observables, Internat. J. Theoret. Phys. 56 (2017), 4073–4083.10.1007/s10773-017-3436-1
  12. [12] FOULIS, D. J.—BENNETT, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24, (1994), 1331–1352.10.1007/BF02283036
  13. [13] FRANZ, U.: What is stochastic independence? In: Quantum Probab. White Noise Anal., Vol. 16: Non-Commutativity, Infnite-Dimensionality and Probability at the Crossroads (N. Obata et al., eds.), Proc. of the RIMS Workshop on Infnite Dimensional Analysis and Quantum Probability, Kyoto, Japan, 2001 World Scientifc, 2003 (arXiv:math/0206017 [math.QA]).
  14. [14] FRIČ, R.: Remarks on statistical maps and fuzzy (operational) random variables,Tatra Mt. Math. Publ. 30 (2005), 21–34.
  15. [15] _______ On D-posets of fuzzy sets, Math. Slovaca 64 (2014), 545–554.10.2478/s12175-014-0224-8
  16. [16] FRIČ, R.—PAPČO, M.: On probability domains, Internat. J. Theoret. Phys. 49 (2010), 3092–3100.10.1007/s10773-009-0162-3
  17. [17] _______ A categorical approach to probability, Studia Logica 94 (2010), 215–230.10.1007/s11225-010-9232-z
  18. [18] _______ Fuzzification of crisp domains,Kybernetika 46 (2010), 1009–1024.
  19. [19] _______ On probability domains II, Internat. J. Theoret. Phys. 50 (2011), 3778–3786.10.1007/s10773-011-0855-2
  20. [20] _______ On probability domains III, Internat. J. Theoret. Phys. 54 (2015), 4237–4246.10.1007/s10773-014-2471-4
  21. [21] _______ Upgrading probability via fractions of events, Commun. Math. 24 (2016), 29–41.10.1515/cm-2016-0004
  22. [22] _______ Probability: from classical to fuzzy, Fuzzy Sets Syst. 326 (2017), 106–114.10.1016/j.fss.2017.06.003
  23. [23] _______ On probability domains IV, Internat. J. Theoret. Phys. 56 (2017), 4084–4091.10.1007/s10773-017-3438-z
  24. [24] GUDDER, S.: Fuzzy probability theory, Demonstratio Math. 31 (1998), 235–254.10.1515/dema-1998-0128
  25. [25] JUREČKOVÁ, M.: On the conditional expectation on probability MV-algebras with product, Soft Comput. 5 (2001), 381–385.10.1007/s005000100140
  26. [26] KALINA, M.—NÁNÁSIOVÁ, O.: Conditional states and joint distributions on MV-algebras,Kybernetika 42 (2006), 129–142.
  27. [27] KOLMOGOROV, A. N.: Grundbegriffe der wahrscheinlichkeitsrechnung. Springer, Berlin, 1933.10.1007/978-3-642-49888-6
  28. [28] KÔPKA, F.: Quasi product on Boolean D-posets, Int.J.Theor.Phys. 47 (2008), 26–35.10.1007/s10773-007-9457-4
  29. [29] KÔPKA, F.—CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21–34.
  30. [30] KROUPA, T.: Many-dimensional observables on Lukasiewicz tribe: constructions, conditioning and conditional independence,Kybernetika 41 (2005), 451–468.
  31. [31] _______ Conditional probability on MV-algebras, Fuzzy Sets Syst. 149 (2005), 369–381.10.1016/j.fss.2004.04.010
  32. [32] LOÈVE M.: Probability Theory. D. Van Nostrand, Inc., Princeton, New Jersey, 1963.
  33. [33] MESIAR, R.: Fuzzy sets and probability theory, Tatra Mt. Math. Publ. 1 (1992), 105–123.
  34. [34] NAVARA, M.: Probability theory of fuzzy events. In: 4th Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (E. Montseny and P. Sobrevilla eds.), Universitat Politecnica de Catalunya, Barcelona, Spain, 2005, pp. 325–329.
  35. [35] PAPČO, M.: On measurable spaces and measurable maps, Tatra Mt. Math. Publ. 28 (2004), 125–140.
  36. [36] _______ On fuzzy random variables: examples and generalizations, Tatra Mt. Math. Publ. 30 (2005), 175–185.
  37. [37] _______ On effect algebras, Soft Comput. 12 (2008), 373–379.10.1007/s00500-007-0171-1
  38. [38] _______ Fuzzification of probabilistic objects. In: 8th Conference of the European Society for Fuzzy Logic and Technology—EUSFLAT ‘13) (G. Pasi et al., ed.), Milan, Italy, 2013, Atlantis Press, Amsterdam, 2013, pp. 67–71, doi:10.2991/eusat.2013.10 (2013).
  39. [39] RIEČAN, B.: On the product MV-algebras, Tatra Mt. Math. Publ. 16 (1999), 143–149.
  40. [40] RIEČAN, B.—MUNDICI, D.: Probability on MV-algebras, In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869–910.10.1016/B978-044450263-6/50022-1
  41. [41] RIEČAN, B.—NEUBRUNN, T.: Integral, Measure, and Ordering. Kluwer Acad. Publ., Dordrecht, 1997.10.1007/978-94-015-8919-2
  42. [42] SKŘIVÁNEK, V.—FRIČ, R.: Generalized random events, Internat. J. Theoret. Phys. 54 (2015), 4386–4396.10.1007/s10773-015-2594-2
  43. [43] VRÁBELOVÁ, M.: A note on the conditional probability on product MV-algebras,Soft Comput. 4 (2000), 58–61.10.1007/s005000050083
  44. [44] ZADEH, L. A.: Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421–27.10.1016/0022-247X(68)90078-4
DOI: https://doi.org/10.2478/tmmp-2019-0016 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 17 - 34
Submitted on: Dec 11, 2017
Published on: Nov 15, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Dušana Babicová, Roman Frič, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.