Have a personal or library account? Click to login
Dedekind’s Criterion and Integral Bases Cover
Open Access
|Aug 2019

References

  1. [1] AHMAD, S.—NAKAHARA, T.—HUSNINE, S. M.: Power integral bases for certain pure sextic fields, Int. J. Number Theory 10 (2014), no. 8 2257–2265.10.1142/S1793042114500778
  2. [2] MOTODA, Y.—NAKAHARA, T.—SHAH, S. I. A.: On a problem of Hasse, J. Number Theory 96 (2002), 326–334.10.1006/jnth.2002.2805
  3. [3] HAMEED, A.—NAKAHARA, T.—HUSNINE, S. M.—AHMAD, S.: On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math. 7 (2011), 19–24.
  4. [4] COHEN, D.—MOVAHHEDI, A.—SALINIER, A.:, Factorization over local fields and the irreducibility of generalized difference polynomials,Mathematika 47 (2000), no. 1–2, 173–196.10.1112/S0025579300015801
  5. [5] COHEN, H.: A Course in Computational Algebraic Number Theory. In: Graduate Texts in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1993.10.1007/978-3-662-02945-9
  6. [6] EL FADIL, L.—BOUGHALEB, O.: p-integral bases and prime ideal factorization in quintec fields, Gulf J. Math. 4 (2016), no. 4, 140–145.10.56947/gjom.v4i4.273
  7. [7] ERSHOV, YU. L.: The Dedekind criterion for arbitrary valuation rings, Dokl. Akad. Nauk 410 (2006), no. 2, 158–160. (In Russian)10.1134/S1064562406050097
  8. [8] DEDEKIND, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Abhandl. Kgl. Ges. Wiss. Göttingen, 23 (1878) 1–23; Gesammelte mathematische Werke, I, Vieweg, 1932, 202–232.
  9. [9] KHUNDUJA, S.—JHORAR, B.: When is R[θ] integrally closed?, J. Algebra Appl. 15 (2016), no. 5; https://www.worldscientific.com/doi/10.1142/S021949881650091210.1142/S0219498816500912
DOI: https://doi.org/10.2478/tmmp-2019-0001 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 8
Submitted on: Sep 8, 2018
Published on: Aug 15, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Lhoussain El Fadil, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.