Have a personal or library account? Click to login
Convergence of the Numerical Scheme for Regularised Riemannian Mean Curvature Flow Equation Cover

Convergence of the Numerical Scheme for Regularised Riemannian Mean Curvature Flow Equation

Open Access
|Mar 2019

References

  1. [1] EYMARD, R.—HANDLOVIČOVÁ, A.—MIKULA, K.: Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA J. Numer. Anal. 31 (2011), 813–846.10.1093/imanum/drq025
  2. [2] OSHER, S.—SETHIAN, J. A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12–49.10.1016/0021-9991(88)90002-2
  3. [3] MIKULA, K.—SARTI, A.—SGALLARRI, A.: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation, Comput. Vis. Sci. 9 (2006), 23–31.10.1007/s00791-006-0014-0
  4. [4] ______ Co-volume level set method in subjective surface based medical image segmentation, in: Handbook of Medical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.), Springer, New York, 2005, pp. 583–626.
  5. [5] MIKULA, K.—RAMAROSY, N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing, Numer. Math. 89 (2001), 561–590.10.1007/PL00005479
  6. [6] TIBENSKÝ, M.: Využitie Metód Založených na Level Set Rovnici v Spracovaní Obrazu. Faculty of mathematics, physics and informatics, Comenius University, Bratislava, 2016.
  7. [7] DRONIOU, J.—NATARAJ, N.: Improved L2estimate for gradient schemes and super- convergence of the TPFA finite volume scheme, IMA J. Numer. Anal. 38 (2018), 1254–1293.10.1093/imanum/drx028
  8. [8] EYMARD, R.—GALLOUET, T.—HERBIN, R.: Finite volume approximation of elliptic problems and convergence of an approximate gradient, Appl. Numer. Math. 37 (2001), 31–53.10.1016/S0168-9274(00)00024-6
  9. [9] ______ Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), 1009–1043.10.1093/imanum/drn084
DOI: https://doi.org/10.2478/tmmp-2018-0025 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 123 - 140
Submitted on: Dec 13, 2017
Published on: Mar 12, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Matúš Tibenský, Angela Handlovičová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.