Have a personal or library account? Click to login
Rényi Entropy and Rényi Divergence in the Intuitionistic Fuzzy Case Cover

Rényi Entropy and Rényi Divergence in the Intuitionistic Fuzzy Case

Open Access
|Mar 2019

References

  1. [1] ARIMOTO, S.: Information Measures and Capacity of Order α for Discrete Memoryless Channels. In: Topics in Information Theory; Colloquia Mathematica Societatis Vol. 16 (János Bolyai, Csiszár, I., Elias, P—Eds.). János Bolyai Mathematical Society and North- Holland, Budapest, Hungary, 1977, pp. 493–519.
  2. [2] ATANASSOV, K.: Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87–96.10.1016/S0165-0114(86)80034-3
  3. [3] ______ More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1989), 37–45.10.1016/0165-0114(89)90215-7
  4. [4] ______ New operations defined over the intuitionistic fuzzy sets, Fuzzy Set. Syst. 61 (1994), 137–142.10.1016/0165-0114(94)90229-1
  5. [5] ______ Intuitionistic Fuzzy Sets: Theory and Applications, Physica Verlag, New York, NY, USA, 1999.
  6. [6] ATANASSOV, K.—RIEČAN, B.: On two operations over intuitionistic fuzzy sets, J. Appl. Math. Stat. Inform. 2 (2006), 145–148.
  7. [7] BAN, A.:Measurable entropy of intuitionistic fuzzy dynamical system, Notes Intuit. Fuzzy Sets 6 (2000), 35–47.
  8. [8] BAN, A. I.: Intuitionistic Fuzzy Measures: Theory and Applications. Nova Science Publishers: New York, NY, USA, 2006.
  9. [9] BURILLO, P.—BUSTINCE, H.: Entropy on intuitionistic fuzzy sets and on intervalvalued fuzzy sets, Fuzzy Sets Syst. 78 (1996), 305–316.10.1016/0165-0114(96)84611-2
  10. [10] CHEN, T.Y.—LI, C.H.: Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis, Inf. Sci. 180 (2010), 4207–4222.10.1016/j.ins.2010.07.009
  11. [11] CIUNGU, L.—RIEČAN, B.: Representation theorem of probabilities on IFS-events, Inf. Sci. 180 (2010), 793–798.10.1016/j.ins.2009.11.003
  12. [12] ČUNDERLÍKOVÁ, K.: The individual ergodic theorem on the IF-events with product, Soft Comput, 14 (2010), 229–234. Doi: 10.1007/s00500-008-0396-7.10.1007/s00500-008-0396-7
  13. [13] DE, S.K.—BISWAS, R.—ROY, A. R.: Some operations on intuitionistic fuzzy sets, Fuzzy Sets Syst. 114 (2000), 477–484.10.1016/S0165-0114(98)00191-2
  14. [14] ĎURICA, M.: Entropy on IF-events, Notes Intuit. Fuzzy Set 13 2007, 30–40.
  15. [15] FARNOOSH, R.—RAHIMI, M.—KUMAR, P.: Removing noise in a digital image using a new entropy smethod based on intuitionistic fuzzy sets. In: Proc. of the International Conference on Fuzzy Systems, Vancouver, BC, Canada, 24–29 July 2016; Institute of Electrical and Electronics Engineers Inc., New York, NY, USA, 2016, pp. 1328–1332.
  16. [16] FEHR, S.—BERENS, S.: On the conditional Rényi entropy, IEEE Trans. on Information Theory 60 (2014), no. 11, 6801–6810.10.1109/TIT.2014.2357799
  17. [17] GRAY, R.M.: Entropy and Information Theory. Springer-Verlag, Berlin, Heidelberg, Germany, 2009.
  18. [18] GUTIERREZ GARCIA, J.—RODABAUGH, S.E.: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued “intuitionistic” sets, “intuitionistic” fuzzy sets and topologies, Fuzzy Sets Syst. 156 (2005), 445–484.10.1016/j.fss.2005.05.023
  19. [19] HE, X.—WU, Y.: Global Research Trends of Intuitionistic Fuzzy Set: A Bibliometric Analysis, J. Intelligent Systems (Published Online: 2017-09-11), Doi: org/10.1515/jisys-2017-0240. https://www.degruyter.com/downloadpdf/j/jisys.ahead-of-print/jisys-2017-0240/jisys-2017-0240.pdf
  20. [20] ILIČ, V. M.—DJORDJEVIČ, I.B.—STANKOVIČ, M.: On a General Definition of Conditional Rényi Entropies, he 4th International Electronic Conference on Entropy and Its Applications (ECEA 2017), 21 November–1st December 2017; Sciforum Electronic Conference Series, Vol. 4, 2017. https://sciforum.net/paper/view/conference/503010.3390/ecea-4-05030
  21. [21] JIZBA, P.—ARIMITSU, T.: The world according to Rényi: thermodynamics of multifractal systems, Ann. Phys. 312 (2004), 17–59.10.1016/j.aop.2004.01.002
  22. [22] KULLBACK, S.—LEIBLER, R.A.: On information and sufficiency, Ann. Math. Stat. 22 (1951), 79–86.10.1214/aoms/1177729694
  23. [23] MARKECHOVÁ, D.—RIEČAN, B.: Logical Entropy of Experiments in the Intuitionistic Fuzzy Case, Entropy 19 (2017), no. 8,10.3390/e19080429
  24. [24] ______ K-L Divergence, Entropy and Mutual Information of Experiments in the Intuitionistic Fuzzy Case, J. Intelligent Fuzzy Syst. (2018) (to appear).
  25. [25] RENNER, R.—WOLF, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Advances in Cryptology—ASIACRYPT 2005, Proc. of the 11th International Conference on the Theory and Application of Cryptology and Information Security, Chennai, India, December 4–8, 2005; Lecture Notes in Comput. Sci. Vol. 3788, Springer-Verlag, Berlin, Germany, 2005, pp. 199–216.
  26. [26] RÉNYI, A.: On measures of entropy and information. In: Proc. of the fourth Berkeley Symposium on Mathematics, Statistics and Probability Vol. I Univ. California Press, Berkeley, Calif, 1961, pp. 547–561.
  27. [27] RIEČAN, B.: On a problem of Radko Mesiar: general form of IF-probabilities, Fuzzy Sets Syst. 152 (2006), 1485–1490.10.1016/j.fss.2005.12.005
  28. [28] ______ Probability theory on IF events. (Aguzzoli, Stefano et al., eds.) In: Algebraic and Proof-Theoretic Aspects of Non-Classical Logics, (Papers in Honor of Daniele Mundici on the Occasion of his 60th Birthday), Lecture Notes in Computer Science Vol. 4460, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin. 2007, pp. 290–308.
  29. [29] RIEČAN, B.—ATANASSOV, K.: Some properties of operations conjunction and disjunction from Łukasiewicz type over intuitionistic fuzzy sets (Part 1), Notes Intuit. Fuzzy Sets 20 (2014), no. 3, 1–5.
  30. [30] ______ Some properties of operations conjunction and disjunction from Łukasiewicz type over intuitionistic fuzzy sets. (Part 2), Notes Intuit. Fuzzy Sets 20 (2014), no. 4, 1–6.
  31. [31] SHANNON, C.E.: A Mathematical Theory of Communication, Bell Syst. Tech. J. 27 (1948), 379–423.10.1002/j.1538-7305.1948.tb01338.x
  32. [32] SZMIDT, E.—KACPRZYK, J.: Entropy for intuitionistic fuzzy sets, Fuzzy Sets Syst. 118 (2001), 467–477.10.1016/S0165-0114(98)00402-3
  33. [33] TEIXEIRA, A.—MATOS, A.—ANTUNES, L.: Conditional Rényi entropies, IEEE Trans. on Information Theory 58 (2012), no. 7, 4273–4277. Doi: 10.1109/TIT.2012.2192713.10.1109/TIT.2012.2192713
  34. [34] ZADEH, L. A.: Fuzzy sets, Inf. Control 8 (1965), 338–358.10.1016/S0019-9958(65)90241-X
  35. [35] ZENG, W.—LI, H.: Relationship between similarity measure and entropy of interval valued fuzzy sets, Fuzzy Set. Syst. 157, 2006, 1477–1484.10.1016/j.fss.2005.11.020
DOI: https://doi.org/10.2478/tmmp-2018-0023 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 77 - 105
Submitted on: Oct 9, 2018
Published on: Mar 12, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Beloslav Riečan, Dagmar Markechová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.