Have a personal or library account? Click to login
Comparative Assessment of the Image Divide and Link Algorithm in Different Color Spaces Cover

Comparative Assessment of the Image Divide and Link Algorithm in Different Color Spaces

Open Access
|Mar 2019

References

  1. [1] BASAVAPRASAD, B.—RAVINDRA, H.: A survey on traditional and graph theoretical techniques for image segmentation. In: IJCA Proceedings on National Conference on Recent Advances in Information Technology—NCRAIT ‘14, pp. 38–46.
  2. [2] BOYKOV, Y.—FUNKA-LEA, G.: Graph cuts and efficient n-d image segmentation, Int. J. Comput. Vis. 70 (2006), 109–131.10.1007/s11263-006-7934-5
  3. [3] CANNY, J.: A computational approach to edge detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (1986), 679–698.10.1109/TPAMI.1986.4767851
  4. [4] CHEN,W.—SHI, Y. Q.—XUAN, G.: Identifying computer graphics using hsv color model and statistical moments of characteristic functions. In: IEEE International Conference on Multimedia and Expo—ICME ‘07, Beijin, China, 2007, IEEE, pp. 1123–1126.10.1109/ICME.2007.4284852
  5. [5] CHENG, H.-D.—SUN, Y.: A hierarchical approach to color image segmentation using homogeneity, IEEE Trans. Image Process. 9 (2000), 2071–2082.10.1109/83.88797518262945
  6. [6] ESTRADA, F. J.—JEPSON, A. D.: Benchmarking image segmentation algorithms, Int. J. Comput. Vis. 85 (2009), 167–181.10.1007/s11263-009-0251-z
  7. [7] GÓMEZ, D.—ZARRAZOLA, E.—YÁÑEZ, J.—MONTERO, J.: A divide-and-link algorithm for hierarchical clustering in networks, Inform. Sci. 316 (2015), 308–328.10.1016/j.ins.2015.04.011
  8. [8] GUADA, C.—ZARRAZOLA, E.—YÁÑEZ, J.—RODRÍGUEZ,J. T.—GÓMEZ, D.– –MONTERO, J.: A novel edge detection algorithm based on a hierarchical graph-partition approach, J. Intell. Fuzzy Syst. 34 (2018), 1875–1892.10.3233/JIFS-171218
  9. [9] KERMIT IMAGE TOOLKIT: Color formats for image and video processing, www.equasys.de/colorformat.html,2017.
  10. [10] KRUSKAL, J.: On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc. 7 (1956), 48–50.10.1090/S0002-9939-1956-0078686-7
  11. [11] LI, S. Z.: Markov random field models in computer vision. In: 3rd European Conference on Computer Vision—ECCV ‘94 (J.-O. Eklundh, ed.), Stockholm, Sweden, 1994, Lecture Notes in Comput. Sci., Vol. 801, Springer–Verlag, Berlin, 1994, pp. 361–370.10.1007/BFb0028368
  12. [12] MARTIN, D.—FOWLKES, C.—TAL, D.—MALIK, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proc. of the 8th Internat. Conf. in Computer Vision—ICCV ‘01, Vol. 2 (B. Werner, ed.), Vancouver, BC, Canada, 2001, IEEE, pp. 416–423.10.1109/ICCV.2001.937655
  13. [13] MORTENSEN, E.—BARRETT, W.: Intelligent scissors for image composition, In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ‘95 (S. G. Mair et al., eds.), Los Angeles, CA, 1995, ACM, New York, NY, USA, 1995, pp. 191–198.10.1145/218380.218442
  14. [14] RAMANATH, R.—KUEHNI, R. G.—SNYDER, W. E.—HINKS, D.: Spectral spaces and color spaces, Color Res. Appl. 29 (2004), 29–37.10.1002/col.10211
  15. [15] RODRÍGUEZ, J. T.—GUADA, C.—GÓMEZ, D.—YÁÑEZ, J.—MONTERO, J.: A methodology for hierarchical image segmentation evaluation, In: Proc. of the 16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems—IPMU ‘16, Eindhoven, The Netherlands, 2016 (J. P. Carvalho et al., eds.), Commun. Comput. Inf. Sci., Vol. 610, Springer-Verlag, Berlin, 2016, pp. 635–647.10.1007/978-3-319-40596-4_53
  16. [16] SHI, J.—MALIK, J.: Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 888–905.10.1109/34.868688
  17. [17] SOBEL, I.: An isotropic 3x3 image gradient operator. In: Machine Vision for Three Dimensional Scenes (H. Freeman, ed.), Acad. Press, Inc. Orlando, FL, USA, 1990, pp. 376–379.
  18. [18] SONKA, M.—HLAVAC, V.—BOYLE, R.: Image Processing, Analysis and Machine Vision. Chapman and Hall Computing, Gran Bretaña, UK, 1993.10.1007/978-1-4899-3216-7
  19. [19] SURAL, S.—QIAN, G.—PRAMANIK, S.: Segmentation and histogram generation using the hsv color space for image retrieval. In: IEEE Proceedings in International Conference on Image Processing 2:II–II, Rochester, NY, USA, 2002, IEEE, pp. II–589.10.1109/ICIP.2002.1040019
  20. [20] TETALI, P.: Random walks and the effective resistance of networks, J. Theoret. Probab. 4 (1991), 101–109.10.1007/BF01046996
  21. [21] TKALCIC, M.—TASIC, J.: Colour spaces: Perceptual, historical and applicational background, In: Proc. of the IEEE Region Conference EUROCON ‘03. Computer as a Tool, Ljubljana, Slovenia, 2003, pp. 304–308.10.1109/EURCON.2003.1248032
  22. [22] TRÉMEAU, A.—COLANTONI, P.: Regions adjacency graph applied to color image segmentation, IEEE Trans. Image Process. 9 (2000), 735–744.10.1109/83.84195018255446
DOI: https://doi.org/10.2478/tmmp-2018-0019 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 31 - 41
Submitted on: Dec 13, 2017
Published on: Mar 12, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Carely Guada, Daniel Gómez, J. Tinguaro Rodríguez, Javier Montero, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.