Have a personal or library account? Click to login
Probability Integral as a Linearization Cover
Open Access
|Mar 2019

References

  1. [1] ADÁMEK, J.: Theory of Mathematical Structures, Reidel, Dordrecht, 1983.
  2. [2] BARNETT, J. H.: Origins of Boolean algebra in the logic of classes: George Boole, John Venn, and C. S. Pierce, Convergence; Mathematical Association of America, www.maa.org/publications/periodicals/convergence.
  3. [3] BERNOULLI, J.: Ars Conjectandi, Opus Posthumum. Accedit Tractatus de Seriebus Infinitis, et Epistola Gallicé Scripta de Ludo Pilae Reticularis. Basileae: Impensis Thurnisiorum, Fratrum, 1713.10.5479/sil.262971.39088000323931
  4. [4] BUGAJSKI, S.: Statistical maps I. Basic properties, Math. Slovaca 51 (2001), 321–342.
  5. [5] ______ Statistical maps II. Operational random variables, Math. Slovaca 51 (2001), 343–361.
  6. [6] BUTNARIU, D.—KLEMENT, E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht, 1993.10.1007/978-94-017-3602-2
  7. [7] CHOVANEC, F.—KÔPKA, F.: D-posets, in: Handbook of Quantum Logic and Quantum Structures: Quantum Structures (K. Engesser et al., eds.), Elsevier, Amsterdam, 2007, pp. 367–428.10.1016/B978-044452870-4/50031-5
  8. [8] CHOVANEC, F.—FRIČ, R.: States as morphisms, Internat. J. Theoret. Phys. 49 (2010), 3050–3060.10.1007/s10773-009-0234-4
  9. [9] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: New Trends in Quantum Structures. Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava, 2000.10.1007/978-94-017-2422-7
  10. [10] FOULIS, D. J.: Algebraic measure theory, Atti Semin. Mat. Fis. Univ.Modena 48, (2000), 435–461.
  11. [11] FRIČ, R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras, Czechoslovak Math. J. 52 (2002), 861–874.10.1023/B:CMAJ.0000027239.28381.31
  12. [12] ______ Remarks on statistical maps and fuzzy (operational) random variables, TatraMt. Math. Publ. 30 (2005), 21–34.
  13. [13] ______ Statistical maps: a categorical approach, Math. Slovaca 57 (2007), 41–57.10.2478/s12175-007-0013-8
  14. [14] ______ Extension of domains of states, Soft Comput. 13 (2009), 63–70.10.1007/s00500-008-0293-0
  15. [15] ______ On D-posets of fuzzy sets, Math. Slovaca 64 (2014), 545–554.10.2478/s12175-014-0224-8
  16. [16] FRIČ, R.—PAPČO, M.: On probability domains, Internat. J. Theoret. Phys. 49 (2010), 3092–3100.10.1007/s10773-009-0162-3
  17. [17] ______ A categorical approach to probability, Studia Logica 94 (2010), 215–230.10.1007/s11225-010-9232-z
  18. [18] ______ Fuzzification of crisp domains, Kybernetika 46 (2010), 1009–1024.
  19. [19] ______ On probability domains II. Internat. J. Theoret. Phys. 50 (2011), 3778–3786.10.1007/s10773-011-0855-2
  20. [20] ______ On probability domains III. Internat. J. Theoret. Phys. 54 (2015), 4237–4246.10.1007/s10773-014-2471-4
  21. [21] ______ On probability domains IV, Internat. J. Theoret. Phys. (to appear).
  22. [22] ______ Upgrading probability via fractions of events, Commun. Math. 24 (2016), 29–41.10.1515/cm-2016-0004
  23. [23] ______ Probability: from classical to fuzzy, Fuzzy Sets Syst. 326 (2017), 106–114.10.1016/j.fss.2017.06.003
  24. [24] GUDDER, S.: Fuzzy probability theory, Demonstratio Math. 31 (1998), 235–254.10.1515/dema-1998-0128
  25. [25] KOLMOGOROV, A. N.: Grundbegriffe der wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin, 1933.10.1007/978-3-642-49888-6
  26. [26] KÔPKA, F.—CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21–34.
  27. [27] MESIAR, R.: Fuzzy sets and probability theory, Tatra Mt. Math. Publ. 1 (1992), 105–123.
  28. [28] MUNDICI, D.: A geometric approach to MV-algebras, in: On Logical, Algebraic and Probabilistic Aspects of Fuzzy Set Theory, Dedicated to E. P. Klement (R. Mesiar et al., eds.), Springer, Berlin, 2016, pp. 57–70.10.1007/978-3-319-28808-6_4
  29. [29] NAVARA, M.: Probability theory of fuzzy events, in: 4th Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (E. Montseny and P. Sobrevilla, eds.), Barcelona, Spain, 2005, Universitat Polit’ecnica de Catalunya, Barcelona, Spain, 2005, pp. 325–329.
  30. [30] PAPČO, M.: On measurable spaces and measurable maps, Tatra Mt. Math. Publ. 28 (2004), 125–140.
  31. [31] ______ On fuzzy random variables: examples and generalizations, Tatra Mt. Math. Publ. 30 (2005), 175–185.
  32. [32] ______ On effect algebras, Soft Comput. 12 (2008), 373–379.10.1007/s00500-007-0171-1
  33. [33] ______ Fuzzification of probabilistic objects, in: 8th Conf. of the European Society for Fuzzy Logic and Technology—EUSFLAT ‘13 (G. Pasi et al., eds.), Milano, Italy, 2013, Atlantis Press, Amsterdam, 2013, pp. 67–71.
  34. [34] RIEČAN, B.—MUNDICI, D.: Probability on MV-algebras, in: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869–910.10.1016/B978-044450263-6/50022-1
  35. [35] RIEČAN, B.—NEUBRUNN, T.: Integral, Measure, and Ordering. Kluwer Acad. Publ., Dordrecht, 1997.10.1007/978-94-015-8919-2
  36. [36] SKŘIVÁNEK, V.—FRIČ, R.: Generalized random events, Internat. J. Theoret. Phys. 54 (2015), 4386–4396.10.1007/s10773-015-2594-2
  37. [37] ZADEH, L. A.: Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421–27.10.1016/0022-247X(68)90078-4
DOI: https://doi.org/10.2478/tmmp-2018-0017 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 15
Submitted on: Oct 20, 2017
Published on: Mar 12, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Dušana Babicová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.