Have a personal or library account? Click to login
Oscillation Criteria for Forced first Order Nonlinear Neutral Impulsive Difference System Cover

Oscillation Criteria for Forced first Order Nonlinear Neutral Impulsive Difference System

Open Access
|Jan 2019

References

  1. [1] AGARWAL, R. P.—BOHNER, M.—GRACE, S. R.—O’REGAN, D.: Discrete Oscillation Theory. Hindawi Publ. Corp., New York, 2005.10.1155/9789775945198
  2. [2] LAKSHMIKANTHAM, V.—BAINOV, D. D.—SIMIEONOV, P. S.: Oscillation Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989.10.1142/0906
  3. [3] LALLI, B. S.—ZHANG, B. G.: On existance of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl. 166 (1992), 272–287.10.1016/0022-247X(92)90342-B
  4. [4] LI, W. T.—FAN, X. L.—ZHANG, C. K.: On unbounded solutions of second-order difference equations with a singular nonlinear term, J. Math. Anal. Appl. 246 (2000), 80–88.10.1006/jmaa.2000.6753
  5. [5] LI, Q. L.—ZHANG, Z. G.—GOU, F.—LIANG, H. Y.: Oscillation criteria for third-order difference equations with impulses, J. Comput. Appl. Math. 225 (2009), 80–86.10.1016/j.cam.2008.07.002
  6. [6] LU, W.—GE, W. G.—ZHAO, Z. H.: Oscillatory criteria for third-order nonlinear difference equations with impulses, J. Comput. Appl. Math. 234 (2010), 3366–3372.10.1016/j.cam.2010.04.037
  7. [7] PARHI, N.—TRIPATHY, A. K.: Oscillation criteria for forced nonlinear neutral delay difference equations of first order, Differ. Equ. Dyn. Syst. 8 (2000), 81–97.
  8. [8] _____Oscillation of forced nonlinear neutral delay difference equations of first order, Czechoslovak Math. J. 53 (2003), 83–101.10.1023/A:1022975525370
  9. [9] _____Oscillation of a class of neutral difference equations of first order, J. Difference Equ. Appl. 9 (2003), 933–946.10.1080/1023619021000047680
  10. [10] TRIPATHY, A. K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations, J. Appl. Anal. Comput. 4 (2014), 89–101.10.11948/2014003
  11. [11] TRIPATHY, A. K.—CHHATRIA, G. N.: On oscillatory first order neutral impulsive difference equations (communicated).
  12. [12] WEI, G. P.: The persistance of nonoscillatory solutions of difference equation under impulsive perturbations, Computers Math. Appl. 50 (2005), 1579–1586.10.1016/j.camwa.2005.08.025
  13. [13] ZHANG, H.—CHEN, L.: Oscillations criteria for a class of second-order impulsive delay difference equations, Adv. Complex Syst. 9 (2006), 69–76.10.1142/S0219525906000677
DOI: https://doi.org/10.2478/tmmp-2018-0015 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 175 - 193
Submitted on: Apr 4, 2018
|
Published on: Jan 25, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Arun Kumar Tripathy, Gokula Nanda Chhatria, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.