Have a personal or library account? Click to login
Control of Conservation Laws – An Application Cover
Open Access
|Jan 2019

References

  1. [1] ARONOVICH, G. V.: Waterhammer influence on the control stability for hydraulic turbines, Avtom. i telemekhanika 9 (1948), 204–232. (In Russian)
  2. [2] ARONOVICH, G. V.—KARTVELISHVILI, N. A—LYUBIMTSEV, YA. K.: Waterhammer and Surge Tanks. Nauka Publ. House, Moscow, 1968. (In Russian)
  3. [3] BRESSAN, A.: Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy Problem. Oxford University Press, Oxford, 2000.10.1093/oso/9780198507000.001.0001
  4. [4] ČETAEV, N. G.: Stability and the classical laws, Coll. Sci. Works Kazan Aviation Inst. 5 (1936), 3–18. (In Russian)
  5. [5] COOKE, K. L.: A linear mixed problem with derivative boundary conditions, in: Seminar on Differential Equations and Dynamical Systems (III) (D. Sweet and J. A. Yorke, eds.), Lecture Series, Vol. 51, University of Maryland, College Park, 1970, pp. 11–17.
  6. [6] CORON, J.-M.—D’ANDRÉA-NOVEL, B.—BASTIN, G.: A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. on Autom. Control 52 (2007), 2–11.10.1109/TAC.2006.887903
  7. [7] DAFERMOS, C. M.: Hyperbolic Conservation Laws in Continuum Physics. In: Grundlehren der mathematischen Wissenschaften, Vol. 325, Springer-Verlag, Berlin, 2005.
  8. [8] EL’SGOL’TS, L. E.—NORKIN, S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. In: Mathematics in Science and Engineering, Vol. 105, Academic Press, New York, 1973.
  9. [9] GODUNOV, S. K.: Équations de la physique mathématique. Éditions Mir, Moscou, 1978.
  10. [10] GODUNOV, S. K.—ROMENSKII, E. I.: Elements of Continuum Mechanics and Conservation Laws. Springer, New York, 2003.10.1007/978-1-4757-5117-8
  11. [11] HALANAY, A.: Differential Equations. Stability. Oscillations. Time Lags. In: Mathematics in Science and Engineering, Vol. 23, Academic Press, New York, 1966.
  12. [12] HALANAY, A.—RĂSVAN, V.: Stabilization of a class of bilinear control systems with application to steam turbine regulation, Tohoku Math. J. (2) 32 (1980), 299–308.10.2748/tmj/1178229645
  13. [13] HALE, J. K.—VERDUYN LUNEL, SJOERD M.: Introduction to Functional Differential Equations. In: Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993.10.1007/978-1-4612-4342-7_3
  14. [14] DE HALLEUX, J.—PRIEUR, C.—CORON, J.-M.—D’ANDRÉA–NOVEL, B.—BASTIN, G.: Boundary feedback control in networks of open channels, Automatica 39 (2003), 1365–1376.10.1016/S0005-1098(03)00109-2
  15. [15] KABAKOV, I. P.: Concerning the control process for the steam pressure, Inzh. sbornik 2 (1946), 27–60. (In Russian)
  16. [16] KRASOVSKII, N. N.: Stability of Motion. Stanford University Press, Stanford, 1963.
  17. [17] LAX, P. D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. In: CBMS Regional Conference Series in Mathematics, Vol. 11, SIAM Publications, Philadelphia, 1973.10.1137/1.9781611970562.ch1
  18. [18] LAX, P. D.: Hyperbolic Partial Differential Equations. In: Courant Lecture Notes in Mathematics, Vol. 14, AMS-Courant Institute of Mathematical Sciences, Providence, 2006.10.1090/cln/014
  19. [19] LEFLOCH, P. G.: Hyperbolic Systems of Conservation Laws. Birkhäuser, Basel, 2002.10.1007/978-3-0348-8150-0
  20. [20] LEUGERING, G.—SCHMIDT, E. J. P. G.: On the modeling and stabilization of flows in networks of open canals, SIAM J. Contr. Optim. 41 (2002), 164–180.10.1137/S0363012900375664
  21. [21] LI, T.-T.—YU, W.-C.: Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Math. Series V, Durham, 1985.
  22. [22] LI, T.-T.: Global Classical Solutions for Quasilinear Hyperbolic Systems. In: Research Appl. Math., Vol. 32, Wiley, Chichester, 1994.
  23. [23] LI, T.-T.—WANG, L.-B.: Global Propagation of Regular Nonlinear Hyperbolic Waves. In: Progr. Nonlinear Differential Equations Appl., Vol. 76, Birkhäuser, Berlin, 2009.
  24. [24] LI, T.-T.—QIN, T.-H.: Physics and Partial Differential Equations, Vol. I-II. SIAM Publications, Philadelphia, 2012.10.1137/1.9781611972276
  25. [25] LIU, T. P.: Hyperbolic and Viscous Conservation Laws. In: CBMS-NSF Regional Conference Series in Mathematics, Vol. 72, SIAM Publications, Philadelphia, 2000.
  26. [26] NEYMARK, YU. I.: Dynamical Systems and Controlled Processes. Nauka Publishing House, Moscow, 1978. (In Russian)
  27. [27] PETRE, E.—RĂSVAN, V.: Feedback control of conservation laws systems. Part I: Models, Rev. Roum. Sci. Techn. Sér. Electr. Energ. 54 (2009), 311–320.
  28. [28] POPESCU, M.—ARSENIE, D.—VLASE, P.: Applied Hydraulic Transients: For Hydropower Plants and Pumping Stations. Taylor & Francis, Oxford, 2003.
  29. [29] POPESCU, M.: Hydroelectric Plants and Pumping Stations. Editura Universitară, Bucharest, 2008. (In Romanian)
  30. [30] RĂSVAN, V.: Stability of bilinear control systems occurring in combined heat electricity generation I: The mathematical models and their properties, Rev. Roum. Sci. Techn. Sér. Electr. Energ. 26 (1981), 455–465.
  31. [31] _____Stability of bilinear control systems occurring in combined heat electricity generation II: Stabilization of the reduced models, Rev. Roum. Sci. Techn. Sér. Electr. Energ. 29 (1984), 423–432.
  32. [32] _____Augmented validation and a stabilization approach for systems with propagation, in: Systems Theory: Perspectives, Applications and Developments (F. Miranda, ed.), Systems Science Series, Vol. 1, Nova Science Publ., New York, 2014, pp. 125–170.
  33. [33] _____The stability postulate of N. G. Četaev and the augmented model validation, IFAC PapersOnLine 50 (2017), 7450–7455.10.1016/j.ifacol.2017.08.1510
  34. [34] SERRE, D.: Systèmes de Lois de Conservation. Vol. I-II. Diderot, Paris, 1996.
  35. [35] _____Systems of conservation laws: A challenge for the XXIst century, in: Mathematics Unlimited – 2001 and Beyond (B. Engquist and W. Schmid, eds.), Springer, Berlin, 2001, pp. 1061–1080.10.1007/978-3-642-56478-9_54
  36. [36] SOLODOVNIKOV, V.V.: Operational method application to the study of the speed control process of the hydraulic turbines Avtom. i telemekhanika 6 (1941) 5–20. (In Russian)
DOI: https://doi.org/10.2478/tmmp-2018-0014 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 155 - 174
Submitted on: Apr 18, 2018
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Vladimir Răsvan, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.