Have a personal or library account? Click to login
About Distributed Control in Model of Testosterone Regulation Cover

About Distributed Control in Model of Testosterone Regulation

By: Olga Pinhasov  
Open Access
|Jan 2019

References

  1. [1] GU, K.—KHARITONOV, V. L.—CHEN, J.: Stability of time delay systems. Boston, Birkhäuser, 2003.10.1007/978-1-4612-0039-0
  2. [2] KEENN, D. M.—VEDHULIS, J. D.: A biomathematical model of time-delayed feedback in the human male hypothalamic-pituitary-Leyding cell axis, Amer. J. Physiology, Endocrinology and Metabolism 275 (1998), 157–176.10.1152/ajpendo.1998.275.1.E157
  3. [3] GOEBEL, G.—MÜNZ, U.—ALLGÖWER, F.: Stabilization of linear systems with distributed input delay, In: Proc. of the 2010 American Control Conference—ACC ‘10, Baltimore, MD, USA, 2010, IEEE, pp. 5800–5805.10.1109/ACC.2010.5530430
  4. [4] MAZENC, F.—NUCULESCU, S.-I.—BEKAIK, M.: Stabilization of time-varying nonlinear systems with distributed input delay by feedback of plant’s state, IEEE Transactions on Automatic Control 58 (2013), 264–269.10.1109/TAC.2012.2204832
  5. [5] FERRY, J. D.: Viscoelastic Properties of Polymers. Wiley, New York, 1970.
  6. [6] GOLDEN, J. M.—GRAHAM, G. A. C.: Boundary Value Problems in Linear Viscoelasticity. Springer–Verlag, Berlin, 1988.10.1007/978-3-662-06156-5
  7. [7] DOMOSHNITSKY, A.: Exponential stability of convolution integro-differential equations, Funct. Differ. Equ. 5 (1998), 445–455.
  8. [8] CHURILOV, A.—MEDVEDEV, A.—MATTSON, P.: Discrete-time modelling of a hereditary impulsive feedback system. In: IEEE 53rd Annual Conference on Decision and Control—CDC ‘14, Los Angeles, CA, USA, IEEE, 2014, pp. 765–770.10.1109/CDC.2014.7039474
  9. [9] SMITH, W. R.: Qualitative mathematical models of endocrine systems, Am. J. Physiol. 245 (1983), 473–477.10.1152/ajpregu.1983.245.4.R473
  10. [10] MURRAY, J. D.: Mathematical Biology: I. An Introduction (3rd ed.), Springer, Berlin, 2001.
  11. [11] CARTWRIGHT, M.—HUSAIN, M.: A model for the control of testosterone secretion, J. Theor. Biol. 123 (1986), 239–250.10.1016/S0022-5193(86)80158-8
  12. [12] DAS, P.—ROY, A. B.—DAS, A.: Stability and oscillation of a negative feedback delay model for the control of testosterone secretion, BioSystems 32 (1994), 61–69.10.1016/0303-2647(94)90019-1
  13. [13] MUKHOPADHYAY, B.—BHATTACHARYYA, R.: A delayed mathematical model for testosterone secretion with feedback control mechanism, Int. J. Mathematics and Math. Sciences 2004 (2004), 105–115.10.1155/S0161171204307271
  14. [14] AGARWAL, R. P.—BEREZANSKY, L.—BRAVERMAN, E.—DOMOSHNITSKY, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York, 2012.10.1007/978-1-4614-3455-9
DOI: https://doi.org/10.2478/tmmp-2018-0013 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 149 - 154
Submitted on: Dec 12, 2017
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Olga Pinhasov, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.