Have a personal or library account? Click to login
Networks Describing Dynamical Systems Cover
Open Access
|Jan 2019

References

  1. [1] CROMBACH, A.—HOGEWEG, P.: Evolution of evolvability in gene regulatory networks, PLoS Comput. Biol. 4 (7/2008): e1000112.10.1371/journal.pcbi.1000112243203218617989
  2. [2] VOHRADSKÝ, J.: Neural network model of gene expression, FASEB J. 15 (3/2001), 846–854.10.1096/fj.00-0361com11259403
  3. [3] WUENSCHE, A.: Genomic regulation modeled as a network with basins of attraction, Pac. Symp. Biocomput. 1998: 89–102.
  4. [4] TUŠEK, A.—KURTANJEK, Ž.: Mathematical modelling of gene regulatory networks, in: Applied Biological Engineering – Principles and Practice (Ganesh R. Naik, ed.), InTech, pp. 113–132.
  5. [5] ALAKWAA, F. M.: Modeling of gene regulatory networks: a literature review, J. Comput. Systems Biology 1 (2014), 1–8.10.15744/2455-7625.1.102
  6. [6] JONG, H. D.: Modeling and simulation of genetic regulatory systems: a literature review, J. Comput. Biol. 9 (2002), 67–103.10.1089/1066527025283320811911796
  7. [7] VIJESH, N.—CHAKRABARTI, S. K.—SREEKUMAR, J.: Modeling of gene regulatory networks: A review, J. Biomedical Science and Engineering 6 (2013), 223–231.10.4236/jbise.2013.62A027
  8. [8] KOIZUMI, Y.—MIYAMURA, T.—ARAKAWA, S.—OKI, E.—SHIOMOTO, K.––MURATA, M. : Adaptive virtual network topology control based on attractor selection, J. Lightwave Technology 28 (2010), 1720–1731.10.1109/JLT.2010.2048412
  9. [9] KOIZUMI, Y.—MIYAMURA, T.—ARAKAWA, S.—OKI, E.—SHIOMOTO, K.––MURATA, M.: Application of attractor selection to adaptive virtual network topology control, in: BIONETICS ‘08, Proc. of the 3rd Internat. Conf. on Bio-Inspired Models of Network, Information and Computing Sytems, Vol. 9, Hyogo, Japan, 2008, ICST, Brussels, Belgium, 2008.10.4108/ICST.BIONETICS2008.4714
  10. [10] ACARY, V.—DE JONG, H.—BROGLIATO, B.: Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems, [Research Report] RR-8207, INRIA, 2013, pp. 42.
  11. [11] BROKAN, E.—SADYRBAEV, F.: On a differential system arising in the network control theory, Nonlinear Anal. Model. Control 21(2016), 687–701.10.15388/NA.2016.5.8
  12. [12] ARROWSMITH, D. K.—PLACE, C. M.: Dynamical Systems. Differential equations, maps and chaotic behavior. Chapman and Hall, London, 1992.10.1007/978-94-011-2388-4
  13. [13] PERKO, L.: Differential Equations and Dynamical Systems (3rd ed.), Springer, New York, 2001.10.1007/978-1-4613-0003-8
DOI: https://doi.org/10.2478/tmmp-2018-0004 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 39 - 52
Submitted on: Dec 11, 2017
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Eduard Brokan, Felix Sadyrbaev, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.