Have a personal or library account? Click to login
On The Dense Controllability for The Parabolic Problem with Time-Distributed Functional Cover

On The Dense Controllability for The Parabolic Problem with Time-Distributed Functional

Open Access
|Jan 2019

References

  1. [1] LIONS, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin, 1971.10.1007/978-3-642-65024-6
  2. [2] BUTKOVSKY, A. G.: Optimal control in the systems with distributed parameters, Avtomat. i Telemekh. 22 (1961), 17–26.
  3. [3] EGOROV, A. I.: Optimal Control by Heat and Diffusion Processes. Nauka, Moscow, 1978.
  4. [4] EGOROV, YU. V.: Some problems of theory of optimal control, Zh. Vychisl. Mat. Mat. Fiz. 3 (1963), 887–904.
  5. [5] BUTKOVSKY, A. G.—EGOROV, A. I.—LURIE, K. A.: Optimal control of distributed systems. SIAM J. Control 6 (1968), 437–476.10.1137/0306029
  6. [6] TROLTZSCH, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. In: Grad. Stud. Math. Vol. 112, AMS, Providence, 2010.
  7. [7] ASTASHOVA, I. V.—FILINOVSKIY, A. V.—LASHIN, D. A.: On maintaining optimal temperatures in greenhouses, WSEAS Trans. on Circuits and Systems 15 (2016), 198–204.
  8. [8] FARAG, M. H.—TALAAT, T. A.—KAMAL, E. M.: Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems, Cubo 15 (2013), 111–119.10.4067/S0719-06462013000200011
  9. [9] ASTASHOVA, I.—FILINOVSKIY, A.—LASHIN, D.: On optimal temperature control in hothouses. In: Proc. Int. Conf. on Numerical Anal. and Appl. Math.—ICNAAM ‘16 (Th. Simos and Ch. Tsitouras, eds.), Rhodes, Greece, 2016, AIP Conf. Proc., New York, 2017, pp. 4–8.10.1063/1.4992311
  10. [10] ASTASHOVA, I. V.—FILINOVSKIY, A. V.—KONDRATIEV, V. A.—MURAVEI, L. A.: Some problems in the qualitative theory of differential equations, J. Nat. Geom. 23 (2003), 1–126.
  11. [11] Qualitative Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis. (I. V. Astashova, ed.) Scientific Edition, UNITY-DANA, Moscow, 2012. (In Russian)
  12. [12] LADYZHENSKAYA, O. A.—SOLONNIKOV, V. A.—URAL’SEVA, N. N.: Linear and Quasi-Linear Equations of Parabolic Type. In: Transl. Math. Monogr., Vol. 23, AMS, Providence, RI, 1968.10.1090/mmono/023
  13. [13] LADYZHENSKAYA, O. A.: Boundary value problems of mathematical physics. Fizmatlit, Moscow, 1973.
  14. [14] RIESZ, F.—SZÖKEFALVI-NAGY, B.: Functional Analysis. In: Dover Books on Advanced Mathematics, Dover Publ., New-York, 1990.
  15. [15] LUSTERNIK, L. A.—SOBOLEV, V. I.: Elements of Functional Analysis. Fizmatlit, Moscow, 1965.
  16. [16] BERS, L.—JOHN, F.—SCHECHTER, M.: Partial Differential Equations. In: AMS Lect. Appl. Math., Vol. 3, Wiley, New York, 1964.
  17. [17] ILYIN, A. M.—KALASHNIKOV, A. S.—OLEINIK, O. A.: Linear equations of second order of parabolic type, Russ. Math. Surveys 17 (1962), 3–146.10.1070/RM1962v017n03ABEH004115
  18. [18] LANDIS, E. M.—OLEINIK, O. A.: Generalized analiticity and some connected properties of solutions of elliptic and parabolic equations, Russ. Math. Surveys 29 (1974), 190–206.10.1070/RM1974v029n02ABEH003842
  19. [19] TITCHMARSH, E. C.: The zeros of certain integral functions, Proc. Lond. Math. Soc. 25 (1926), 283–302.10.1112/plms/s2-25.1.283
  20. [20] EVANS, L. C.: Partial Differential Equations. In: Grad. Ser. Math., Vol. 19, AMS, Providence, 1998.
DOI: https://doi.org/10.2478/tmmp-2018-0002 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 9 - 25
Submitted on: Dec 11, 2017
Published on: Jan 25, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Irina V. Astashova, Alexey V. Filinovskiy, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.