Have a personal or library account? Click to login
Problems in Strong Uniform Distribution Cover
By: Kwo Chan and  Radhakrishnan Nair  
Open Access
|Mar 2015

References

  1. [1] BAKER, R. C.: Riemann sums and Lebesgue integrals, Q. J.Math. Oxf. II. Ser. 27 (1976), 191-198.10.1093/qmath/27.2.191
  2. [2] BEWLEY, T.: Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions, Ann. Inst. Henri Poincar´e, Nouv. S´er., Sect. B 7 (1971), 283-291.
  3. [3] BOHL, P.: ¨Uber ein der Theorie der s¨aku¨aren St¨orungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-289.10.1515/crll.1909.135.189
  4. [4] BOURGAIN, J.: On maximal ergodic theory for certain subsets of the integers, Isr. J. Math. 61 (1988), 39-72.10.1007/BF02776301
  5. [5] BOURGAIN, J.: Almost sure convergence in ergodic theory, in: Proc. Int. Conf., Almost Everywhere Convergence, Columbus, OH, 1988, Acadamic, Boston, 1989, pp. 145-151.
  6. [6] CHAN, K.-NAIR, R.: A remark on the distribution of Chebychev polynomials on [-1,1], Unif. Distrib. Theory (to appear).
  7. [7] JESSEN, B.: On the approximation of Lebesgue integrals by Riemann sums, Ann. Math. (2) 35 (1934), 248-251.10.2307/1968429
  8. [8] KHINCHIN, A.: Ein Satz ¨uber kettenbr¨uche arithmetichen anwendungen, Math. Z. 18 (1923), 289-306.10.1007/BF01192408
  9. [9] KOKSMA, J. F.-SALEM, R.: Uniform distribution and Lebesgue integration, Acta Sci. Math. (Szeged) 12 (1950); Actual. Math. Centrum, Amsterdam, Rapport ZW 1949, 004, 9 p.
  10. [10] MARSTRAND, J. M.: On Khinchine’s conjecture about strong uniform distribution, Proc. Lond. Math. Soc. 21 (1970), 540-556.10.1112/plms/s3-21.3.540
  11. [11] NAIR, R.: On strong uniform distribution, Acta Arith. 56 (1990), 183-193.10.4064/aa-56-3-183-193
  12. [12] NAIR, R.: On some arithmetic properties of Lp summable functions, Q. J. Math. Oxf. II. Ser. 47 (1996), 101-105.10.1093/qmath/47.1.101
  13. [13] NAIR, R.: On strong uniform distribution. II., Monatsh. Math. 132 (2001), 341-348.10.1007/PL00010091
  14. [14] NAIR, R.: On a problem of R. C. Baker, Acta Arith. 109 (2003), 343-348.10.4064/aa109-4-4
  15. [15] NAIR, R.: On strong uniform distribution III., Indag. Math. (N.S.) 14 (2003), 233-240.10.1016/S0019-3577(03)90007-3
  16. [16] NAIR, R.: On strong uniform distribution IV., J. Inequal. Appl. 2005, no. 3, 319-327.
  17. [17] NAIR, R.: On polynomial ergodic averages and square functions, in: Number Theory and Polynomials. Proc. of the Workshop (J. McKee et al., eds.), Bristol, UK, 2006, London Math. Soc. Lecture Note Ser., Vol. 352, Cambridge University Press, Cambridge, 2008, pp. 241-254.10.1017/CBO9780511721274.016
  18. [18] RAIKOV, D. A.: On some arithmetic properties of summable functions, Mat. Sb. 1 (43), (1936), 377-384. (In Russian)
  19. [19] REINHOLD-LARSSON, K.: Discrepancy of behaviour of perturbed sequences in Lp spaces, Proc. Amer. Math. Soc. 120 (1994), 865-874.
  20. [20] REISZ, F.: Sur la th´eorie ergodique, Comment. Math. Helv. 17 (1944/45), 221-239.10.1007/BF02566244
  21. [21] ROSENBLATT, J.: Universally bad sequences in ergodic theory, in: Almost everywhere convergence II, Proc. 2nd Int. Conf., Evanston/IL (USA) 1989, Academic Press, Boston, MA, 1991, pp. 227-245.10.1016/B978-0-12-085520-9.50023-X
  22. [22] QUAS, A.-WIERDL, M.: Rates of divergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems 30 (2010), 233-262.10.1017/S0143385709000054
  23. [23] SAWYER, S.: Maximal inequalities of weak type, Ann. of Math. (2) 84 (1966), 157-174.10.2307/1970516
  24. [24] SIERPIŃSKI, W.: On the asymptotic value of a certain sum, Rozprawy Wydz. Mat. Pryzr. Akad. Um. 50 (1910), 1-10. (In Polish)
  25. [25] WALTERS, P.: An Introduction to Ergodic Theory, in: Grad. Texts in Math. Vol. 79, Springer-Verlag, Berlin, 1982.10.1007/978-1-4612-5775-2
  26. [26] WEYL, H.: ¨Uber der Gibbssche Erscheinung und verwandte Konvergenzph¨anomenene, Rend. Mat. Palermo 30 (1910), 377-407.10.1007/BF03014883
  27. [27] WEYL, H.: ¨Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.10.1007/BF01475864
DOI: https://doi.org/10.2478/tmmp-2014-0018 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 51 - 64
Submitted on: Oct 6, 2014
Published on: Mar 11, 2015
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Kwo Chan, Radhakrishnan Nair, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.