Have a personal or library account? Click to login
A Note on the Set of Discontinuity Points of Multifunctions of two Variables Cover

A Note on the Set of Discontinuity Points of Multifunctions of two Variables

Open Access
|Aug 2014

References

  1. [1] BAIRE, R.: Sur les fonctions des variables reelles, Ann. Mat. Appl. 3 (1899), 1-22.10.1007/BF02419243
  2. [2] BRISAC, R.: Les classes de Baire des fonctions multiformes, C. R. Acad. Sci. Paris 224 (1974), 257-258.
  3. [3] EWERT, J.: Multivalued mappings and bitopological spaces. SŁupsk, 1985. (In Polish)
  4. [4] FUDALI, L. A.: On cliquish functions on product spaces, Math. Slovaca 33 (1988), 53-58.
  5. [5] GARG, K. M.: On the classification of set-valued functions, Real Anal. Exchange 9 (1983-1984), 86-93.10.2307/44153516
  6. [6] GRANDE, Z.: On functions of two variables equicontinuous in one variable, Real Anal. Exchange 22 (1996-97), 760-765.10.2307/44153952
  7. [7] HANSEL, R.W.: Hereditarily additive families in descriptive set theory and measurable multimaps, Trans. Amer. Math. Soc. 278 (1983), 725-749.
  8. [8] HENRIKSEN, H.-WOODS, R. G.: Separate versus joint continuity: A tale of four topologies, Topology Appl. 97 (1999), 175-205.10.1016/S0166-8641(98)00076-5
  9. [9] HOLá, L’.-PIOTROWSKI, Z.: Set of continuity points of functions with values in generalized metric spaces, Tatra Mt. Math. Publ. 42 (2009), 1-12.
  10. [10] KEMPISTY, S.: Sur les fonctions semi-continues par raport á chacume de deux variables, Fund. Math. 14 (1929), 237-241.10.4064/fm-14-1-237-241
  11. [11] KERSHNER, R.: The continuity of functions of many variables, Trans. Amer. Math. Soc. 53 (1943), 83-100.10.1090/S0002-9947-1943-0007522-5
  12. [12] KLEIN, E.-THOMPSON, A. C.: Theory of Correspondences, in: Canad. Math. Soc. Ser. Monographs Adv. Texts, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984
  13. [13] KURATOWSKI, K.: On set-valued B-measurable mappings and a theorem of Hausdorff, in: Theory Sets Topology, Collection Papers Honour Felix Hausdorff, Berlin, 1972, pp. 355-362.
  14. [14] KWIECIŃSKA, G.: On the Borel class of multivalued functions of two variables, Topology Proc. 25 (2000), 601-613.
  15. [15] MATEJDES, M.: Continuity of multifunctions, Real Anal. Exchange 19 (1992-1993), 394-413.10.2307/44152391
  16. [16] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988-89), 259-305.10.2307/44151947
  17. [17] PIOTROWSKI, Z.: The genesis of separate versus joint continuity, Tatra Mt. Math. Publ. 8 (1996), 113-126.
DOI: https://doi.org/10.2478/tmmp-2014-0013 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 145 - 154
Submitted on: Jan 2, 2014
Published on: Aug 15, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Grażyna Kwiecińka, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.