Have a personal or library account? Click to login
A Variational McShane Characterization of Locally Convex Spaces Possessing the Radon-Nikodym Property Cover

A Variational McShane Characterization of Locally Convex Spaces Possessing the Radon-Nikodym Property

Open Access
|Aug 2014

References

  1. [1] BLONDIA, C.: Integration in locally convex spaces, Simon Stevin 55 (1981), 81-102.
  2. [2] BONGIORNO, B.-DI PIAZZA, L.-MUSIAL, K.: A variational Henstock integral characterization of the Radon-Nikodym property, Illinois J. Math. 53 (2009), 87-99.10.1215/ijm/1264170840
  3. [3] DIESTEL, J.-UHL, J. J.: Vector Measures, in: Math. Surveys Monogr., Vol. 15, Amer. Math. Soc., Providence, RI, 1977.10.1090/surv/015
  4. [4] DUNFORD, N.-SCHWARTZ, J. T.: Liner Operators, Part I: General Theory, in: Pure Appl. Math. (N.Y.), Vol. 7, Interscience Publ., New York, 1958.
  5. [5] KALIAJ, S. B.: A variational McShane integral characterization of the Radon-Nikodym property, Math. Slovaca 63 (2013), 503-510.10.2478/s12175-013-0112-7
  6. [6] KALIAJ, S. B.: The Radon-Nikodym property and the limit average range, Math. Slovaca (to appear).
  7. [7] KALIAJ, S. B.: The average range characterization of the Radon-Nikodym property, Mediterr. J. Math., Springer, Basel, 2013, DOI 10.1007/ s00009-013-0352-3.
  8. [8] KALIAJ, S. B.: The Radon-Nikodym property, generalized bounded variation and the average range, Math. Nachr. (2014), 1-9, /DOI 10.1002/mana.201300171.
  9. [9] MARRAFFA, V.: Riemann type integrals for functions taking values in a locally convex space, Czechoslovak Math. J. 56 (2006), 475-490.10.1007/s10587-006-0030-8
  10. [10] MARRAFFA, V.: Non absolutely convergent integrals of functions taking values in a locally convex space, Rocky Mountain J. Math. 36 (2006), 1577-1593.10.1216/rmjm/1181069383
  11. [11] MARRAFFA, V.: The variational McShane integral, Rocky Mountain J. Math. 39 (2009), 1993-2013.10.1216/RMJ-2009-39-6-1993
  12. [12] RUDIN, W.: Real and Complex Analysis (2nd ed.), McGraw-Hill Book Comp., New York, 1974.
  13. [13] SCHWABIK, š.-YE, G.: Topics in Banach Space Integration, in: Ser. Real Anal., Vol. 10, World Scientific, Hackensack, NJ, 2005.10.1142/5905
  14. [14] SCHAEFER, H. H.: Topological Vector Spaces, Grad. Texts in Math., Vol. 3 (3rd printing corrected), Springer-Verlag XI, New York, (1971).10.1007/978-1-4684-9928-5
  15. [15] THOMSON, B. S.: Derivates of Interval Functions, Mem. Amer. Math. Soc. (1991), 452.10.1090/memo/0452
  16. [16] THOMSON, B. S.: Differentiation, pp. 179-247 in: Handb. Measure Theory Vol. I and II. (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 179-247.
DOI: https://doi.org/10.2478/tmmp-2014-0003 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 23 - 35
Submitted on: May 1, 2013
Published on: Aug 15, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Sokol Bush Kaliaj, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.