Have a personal or library account? Click to login
Korous Type Inequalities for Orthogonal Polynomials in two Variables Cover

Korous Type Inequalities for Orthogonal Polynomials in two Variables

Open Access
|Aug 2014

References

  1. [1] DUNHAM, J.: Fourier Series and Orthogonal Polynomials. Dover Publications, Mineola, NY, 2004.
  2. [2] DUNKL, CH. F.-XU, Y.: Orthogonal Polynomials of Several Variables, in: Encyclopedia Math. Appl., Vol. 81, Cambridge Univ. Press, Cambridge, 2001.10.1017/CBO9780511565717
  3. [3] JACKSON, D.: Fourier Series and Orthogonal Polynomials. Carus Math. Monogr., Vol. VI, Math. Assoc. America, Washington, DC, 1941.
  4. [4] KOORNWINDER, T. H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I, II, Indag. Math. 36 (1974), 48-66.10.1016/1385-7258(74)90013-4
  5. [5] KOORNWINDER, T. H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators III, IV, Indag. Math. 36 (1974), 357-381.10.1016/1385-7258(74)90026-2
  6. [6] KOROUS, J.: On the development of functions of one real variable in the certain series of orthogonal polynomials, Rozpravy II. třidy České akademie věd v Praze 40 (1938), 1-12. (In Czech)
  7. [7] KRALL, H. L.-SHEFFER, I. M.: Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. (4) 76 (1967), 325-376.10.1007/BF02412238
  8. [8] MARČOKOVÀ, M.: Second order partial differential equations for some orthogonal polynomials in two variables, Stud. Univ. ˇ Zilina Math. Phys. Ser. 13 (2001), 127-132.
  9. [9] MARČOKOVÀ, M.: Approximation of functions in two variables by Ces`aro means of Fourier-Jacobi sums, in: Proc. of the Internat. Scientific Conf. of Mathematics, Vol. 1, (P. Marušiak et al., eds.), Žilina, Slovakia, 1998, EDIS, Žilina University Publisher, Žilina, 1999, pp. 161-165.
  10. [10] MARČOKOVÀ, M.-GULDAN, V.: On one orthogonal transform applied on a system of orthogonal polynomials in two variables, J. Appl. Math.-Aplimat 2 (2009), pp. 239-245.
  11. [11] SUETIN, P. K.: Orthogonal Polynomials in Two Variables, in: Anal. Methods Spec. Funct., Vol. 3, Gordon and Breach Sci. Publ., Amsterdam, 1999.
  12. [12] SZABŁLOWSKI, P. J.: On affinity relating two positive measures and the connection coefficients between polynomials orthogonalized by these measures, Appl. Math. Comput. 219 (2013), 6768-6776.
  13. [13] SZEGÖ, B.: Orthogonal Polynomials. Nauka, Moscow, 1962. (In Russian)
DOI: https://doi.org/10.2478/tmmp-2014-0001 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 12
Submitted on: Jan 10, 2012
Published on: Aug 15, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Branislav Ftorek, Pavol Oršansky, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.