Have a personal or library account? Click to login
LOGARITHMIC SIGNATURES FOR ABELIAN GROUPS AND THEIR FACTORIZATION Cover

LOGARITHMIC SIGNATURES FOR ABELIAN GROUPS AND THEIR FACTORIZATION

Open Access
|Feb 2014

References

  1. [1] BLACKBURN, S. R.-CID, C.-MULLAN, C.: Cryptanalysis of the MST3 public keycryptosystem, J. Math. Crypt. 3 (2009), 321-338.
  2. [2] LEMPKEN, W.-MAGLIVERAS, S. S.-TRAN VAN TRUNG-WEI, W.: A public keycryptosystem based on non-abelian finite groups, J. Cryptology 22 (2009), 62-74.10.1007/s00145-008-9033-y
  3. [3] MAGLIVERAS, S. S.-OBERG, B. A.-SURKAN, A. J.: A new random number generatorfrom permutation groups, Rend. Sem. Mat. Fis. Milano 54 (1984), 203-223.10.1007/BF02924858
  4. [4] MAGLIVERAS, S. S.: A cryptosystem from logarithmic signatures of finite groups, in: Proc. of the 29th Midwest Symposium on Circuits and Systems (M. Ismail, ed.), Lincoln, NE, 1986, Elsevier Publ. Comp., 1986, pp. 972-975.
  5. [5] MAGLIVERAS, S. S.-MEMON, N. D.: Random permutations from logarithmic signatures, in: Computing in the 90’s, 1st Great Lakes Comp. Sci. Conf. (N.A. Sherwani et al., eds.), Kalamazoo, USA, 1989, Lecture Notes in Comput. Sci., Vol. 507 Springer-Verlag, Berlin, 1989, pp. 91-97.
  6. [6] MAGLIVERAS, S. S.-MEMON, N. D.: The algebraic properties of cryptosystem PGM, J. Cryptology 5 (1992), 167-183.10.1007/BF02451113
  7. [7] MAGLIVERAS, S. S.-STINSON, D. R.-TRAN VAN TRUNG: New approaches to designingpublic key cryptosystems using one-way functions and trapdoors in finite groups, J. Cryptology 15 (2002), 285-297.10.1007/s00145-001-0018-3
  8. [8] MAGLIVERAS, S. S.-SVABA, P.-TRAN VAN TRUNG-ZAJAC, P.: On the securityof a realization of cryptosystem MST3, Tatra Mt. Math. Publ. 41 (2008), 1-13.
  9. [9] MARQUARDT, P.-SVABA, P.-TRAN VAN TRUNG: Pseudorandom number generatorsbased on random covers for finite groups, Des. Codes Cryptogr. 64 (2012), 209-220.10.1007/s10623-011-9485-1
  10. [10] SVABA, P.-TRAN VAN TRUNG: On generation of random covers for finite groups, Tatra Mt. Math. Publ. 37 (2007), 105-112.
  11. [11] SVABA, P.-TRAN VAN TRUNG: Public key cryptosystem MST3: cryptanalysis andrealization, J. Math. Crypto. 4 (2010), 271-315.10.1515/jmc.2010.011
  12. [12] SZAB´ O, S.: Topics in Factorization of Abelian Groups. Birkh¨auser Verlag, Berlin, 2004.10.1007/978-93-86279-22-4
  13. [13] VASCO, M. I.G.-DEL POZO, A.I.P.-DUARTE, P.T.: A note on the security of MST3 Des. Codes Cryptogr. 55 (2010), 189-200.
DOI: https://doi.org/10.2478/tmmp-2013-0033 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 21 - 33
Published on: Feb 18, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Pavol Svaba, Tran van Trung, Paul Wolf, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.