Have a personal or library account? Click to login
LINEAR COMBINATIONS OF THE CLASSIC CANTOR SET Cover
Open Access
|Feb 2014

References

  1. [1]CANTOR, G.: Uber unendliche, lineare Punktmannichfaltigkeiten, Math. Am. 21 (1883),545-591.
  2. [2]GUTHRIE, J. A.-NYMANN, J. E.: The topological structure of the set of sub sums ofan infinite series, Colloq. Math. 55 (1988), 323-327.10.4064/cm-55-2-323-327
  3. [3]HORNICH, H.: Ober beliebige Teilsummen absolut konvergenter Reihen, Monatsh. Math.Phys. 49 (1941), 316-320.10.1007/BF01707309
  4. [4]JONES, R.: Achievement Sets of Sequences, Amer. Math. Monthly 118 (2011), 508-521.10.4169/amer.math.monthly.118.06.508
  5. [5]KAKEYA, S.: On the partial sums of an infinite series, Proc. Tokyo Math-Phys. Soc.2nd ser. 7 (1914), 250-251.
  6. [6]MENON, P. K.: On a class of perfect set, Bull. Amer. Math. Soc. 54 (1948), 706-711.10.1090/S0002-9904-1948-09060-7
  7. [7]DE A. MOREIRA, C. G. T.-YOCCOZ, J. C.: Stable intersections of regular Cantorsets with large Hausdorff dimensions, Ann. of Math. 154 (2001), 45-96.10.2307/3062110
  8. [8]NYMANN, J. E.: Linear combinations of Cantor sets, Colloq. Math. 68 (1995), 259-284.10.4064/cm-68-2-259-264
  9. [9]NYMANN, J. E.-SAENZ, R. A.: On the paper of Guthrie and Nymann on subsums ofinfinite series, Colloq. Math. 83 (2000), 1-4.10.4064/cm-83-1-1-4
  10. [10]PALIS, J.: Homoclinic Orbits, Hyperbolic Dynamic and Fractional Dimensions of CantorSets (Lefschetz Centennial Conference), Amer. Math. Soc. 58 (1987), 203-216.
  11. [11]RANDOLPH, J. F.: Distances between points of the Cantor set, Amer. Math. Monthly47 (1940), 549-551.10.2307/2303836
  12. [12]RANDOLPH, J. F.: Some properties od sets of the Cantor type, J. London Math. Soc.16 (1941), 38-42.10.1112/jlms/s1-16.1.38
  13. [13]SANNAMI, A.: An example of a regular Cantor set whose difference set is a Cantor setwith positive measure, Hokkaido Math. J. 21 (1992), 7-24.10.14492/hokmj/1381413267
  14. [14]STEINHAUS, H. D.: Nowa Wlasnosc Mnogosci Cantora, Wektor (1917), 1-3.English transl. in: STEINHAUS, H. D. Selected Papers. PWN, Warszawa 1985.
  15. [15]UTZ, W. R.: The distance set for the Cantor Discontinuum, Amer. Math. Monthly 58(1951), 407-408.10.2307/2306554
  16. [16]WEINSTEIN, A. D.- SHAPIRO, B. E.: On the structure of a set of a-representablenumbers, Izv. Vyshsh. Uchebn. Zaved. Matematika 24 (1980), 8-11.
DOI: https://doi.org/10.2478/tmmp-2013-0026 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 47 - 60
Published on: Feb 18, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year
Keywords:

© 2014 Marta Pawłowicz, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.