Have a personal or library account? Click to login
ON λ-ASYMPTOTICALLY WIJSMAN GENERALIZED STATISTICAL CONVERGENCE OF SEQUENCES OF SETS Cover

ON λ-ASYMPTOTICALLY WIJSMAN GENERALIZED STATISTICAL CONVERGENCE OF SEQUENCES OF SETS

By: Bipan Hazarika and  Ayhan Esi  
Open Access
|Feb 2014

References

  1. [1] AUBIN, J. P.-FRANKOWSKA, H.: Set-valued Analysis, Birkhauser, Boston, 1990.
  2. [2] BARONTI, M.-PAPINI, P.: Convergence of sequences of sets, in: Methods of Functional Analysis in Approximation Theory, Proc. Int. Conf., Bombay, 1985, Birkhauser, Basel, 1986, pp. 133-155.
  3. [3] BEER, G.: Convergence of continuous linear functionals and their level sets, Archiv der Mathematik 52 (1989), 482-491.10.1007/BF01198356
  4. [4] BEER, G.: On convergence of closed sets in a metric space and distance functions, Bull.Austral. Math. Soc. 31 (1985), 421-432.10.1017/S0004972700009370
  5. [5] BORWEIN, J. M.-VANDERWERFF, J. D.: Dual Kadec-Klee norms and the relationship between Wijsman, slice and Mosco convergence, Mich. Math. J. 41 (1994), 371-387.10.1307/mmj/1029005003
  6. [6] BUCK, R.C.: Generalized asymptotic density, Amer. J. Math. 75 (1953), 335-346.10.2307/2372456
  7. [7] ESI, A.-HAZARIKA, B.: λ-statistical convergence of sequences of sets (preprint).
  8. [8] FAST, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.10.4064/cm-2-3-4-241-244
  9. [9] FRIDY, J. A.: On statistical convergence, Analysis 5 (1985), 301-313.10.1524/anly.1985.5.4.301
  10. [10] HAZARIKA, B.-ESI, A.: Statistically almost λ-convergence of sequences of sets, European J. of Pure Appl. Math. 6 (2013), 137-146.
  11. [11] LEINDLER, L.: ¨Uber die de la Vall´ee-Pousinsche Summeierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar. 16 (1965), 375-387.10.1007/BF01904844
  12. [12] MAROUF, M. S.: Asymptotic equivalence and summability, Internat. J. Math.Math. Sci. 16 (1993), 755-762.10.1155/S0161171293000948
  13. [13] MURSALEEN, M.: λ-statistical convergence, Math. Slovaca 50 (2000), 111-115.
  14. [14] NURAY, F.-RHOADES, B. E.: Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 1-9.
  15. [15] PATTERSON, R. F.: On asymptotically statistically equivalent sequences, Demonstratio Math. 36 (2003), 149-153.
  16. [16] POBYVANCTS, I. P.: Asymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Ces`aro and Abel, Mat. Fiz. 28 (1980), 83-87.
  17. [17] ŠALÀT, T.: On statistical convergence of real numbers, Math. Slovaca 30 (1980), 139-150.
  18. [18] SCHOENBERG, I. J.: The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.10.1080/00029890.1959.11989303
  19. [19] STEINHAUS, H.: Sur la convergence ordinate et la convergence asymptotique, Colloq.Math. 2 (1951), 73-84.10.4064/cm-2-2-98-108
  20. [20] ULUSU, U.-NURAY, F.: Lacunary statistical convergence of sequence of sets, Progr.Appl. Math. 4 (2012), 99-109.
  21. [21] ULUSU, U.-NURAY, F.: On asymptotically lacunary statistical equivalent set sequences, J. Math. 2013 (2013), 5 p.10.1155/2013/310438
  22. [22] WIJSMAN, R. A.: Convergence of sequences of convex sets, cones and functions, Bull.Amer. Math. Soc. 70 (1964), 186-188.10.1090/S0002-9904-1964-11072-7
  23. [23] WIJSMAN, R. A.: Convergence of sequences of convex sets, cones and functions II, Trans.Amer. Math. Soc. 123 (1966), 32-45.10.1090/S0002-9947-1966-0196599-8
  24. [24] ZYGMUND, A.: Trigonometric Series. Cambridge Univ. Press, Cambridge, UK, 979.
DOI: https://doi.org/10.2478/tmmp-2013-0025 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 67 - 77
Published on: Feb 18, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Bipan Hazarika, Ayhan Esi, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.