Have a personal or library account? Click to login
ALGEBRAIC PROPERTIES OF WEAK PERRON NUMBERS Cover
By: Horst Brunotte  
Open Access
|Feb 2014

References

  1. [1] BOYD, D. W.: The maximal modulus of an algebraic integer, Math. Comp. 45 (1985), 243-249.10.1090/S0025-5718-1985-0790657-8
  2. [2] DUBICKAS, A.: A note on powers of Pisot numbers, Publ. Math. Debrecen 56 (2000), 141-144.
  3. [3] DUBICKAS, A.: Mahler measures generate the largest possible groups, Math. Res. Lett. 11 (2004), 279-283.10.4310/MRL.2004.v11.n3.a1
  4. [4] DUBICKAS, A.-SMYTH, C. J.: On the Remak height, the Mahler measure and conjugate sets of algebraic numbers lying on two circles, Proc. Edinburgh Math. Soc. (2) 44 (2001), 1-17.10.1017/S001309159900098X
  5. [5] FERGUSON, R.: Irreducible polynomials with many roots of equal modulus., Acta Arith. 78 (1997), 221-225.10.4064/aa-78-3-221-225
  6. [6] JURKAT, W.-KRATZ, W.-PEYERIMHOFF, A.: On best two-dimensional Dirichlet- -approximations and their algorithmic calculation, Math. Ann. 244 (1979), 1-32.10.1007/BF01420334
  7. [7] JUST, B.: Generalizing the continued fraction algorithm to arbitrary dimensions, SIAM J. Comput. 21 (1992), 909-926.10.1137/0221054
  8. [8] KENYON, R.: The construction of self-similar tilings, Geom. Funct. Anal. 6 (1996), 471-488.10.1007/BF02249260
  9. [9] KOREC, I.: Irrational speeds of configurations growth in generalized Pascal triangles, Theoret. Comput. Sci. 112 (1993), 399-412.10.1016/0304-3975(93)90029-S
  10. [10] , Open problems more or less related to generalized Pascal triangles, Preprint 22/1996, Mathematical Institute SAS, Bratislava.
  11. [11] LIND, D. A.: The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), 283-300.10.1017/S0143385700002443
  12. [12] , Entropies of automorphisms of a topological Markov shift, Proc. Amer. Math.Soc. 99 (1987), 589-595.10.1090/S0002-9939-1987-0875406-0
  13. [13] LIND, D.-MARCUS, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511626302
  14. [14] SCHINZEL, A.: A class of algebraic numbers, Tatra Mt. Math. Publ. 11 (1997), 35-42.
  15. [15] VERGER-GAUGRY, J.-L.: Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers, Unif.Distrib. Theory 3 (2008), 157-190.
  16. [16] WU, Q.: The smallest Perron numbers, Math. Comp. 79 (2010), 2387-2394.10.1090/S0025-5718-10-02345-8
DOI: https://doi.org/10.2478/tmmp-2013-0023 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 27 - 33
Published on: Feb 18, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Horst Brunotte, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.