References
- [1] ADÁMEK, J.: Theory of Mathematical Structures. Reidel, Dordrecht, 1983.
- [2] CHOVANEC, F.-KÔPKA, F.: D-posets, in: Handbook of Quantum Logic and Quantum Structures: Quantum Structures (K. Engesser et al., eds.), Elsevier, Amsterdam, 2007, pp. 367-428.10.1016/B978-044452870-4/50031-5
- [3] DVUREČENSKIJ, A.-PULMANNOVÁ, S.: New Trends in Quantum Structures, in: Math. Appl. (Dordrecht), Vol. 516, Kluwer Acad. Publ. Dordrecht; Ister Science, Bratislava, 2000.10.1007/978-94-017-2422-7
- [4] FRIČ, R.: Remarks on sequential envelopes, Rend. Istit. Math. Univ. Trieste 20 (1988), 19-28.
- [5] FRIČ, R.: History of sequential convergence spaces, in: Handbook of the History of General Topology, Vol. 1 (C. E. Aull et al., eds.), Kluwer Acad. Publ., Amsterdam, 1997, pp. 343-355. 10.1007/978-94-017-0468-7_16
- [6] FRIČ, R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras, Czechoslovak Math. J. 52 (2002), 861-874.10.1023/B:CMAJ.0000027239.28381.31
- [7] FRIČ, R.: Extension of measures: a categorical approach, Math. Bohemica 130 (2005), 397-407.10.21136/MB.2005.134212
- [8] FRIČ, R.: Extension of domains of states, Soft Comput. 13 (2009), 63-70.10.1007/s00500-008-0293-0
- [9] FRIČ, R.: Measures: continuity, measurability, duality, extension, Tatra Mt. Math. Publ. 42 (2009), 161-174.
- [10] FRIČ, R.: From probability to sequences and back Rend. Istit. Mat. Univ. Trieste 44 (2012), 285-296.
- [11] FRIČ, R.-HUŠEK, M.: Projectively generated convergence of sequences, Czechoslovak Math. J. 33 (1983), 525-536.10.21136/CMJ.1983.101909
- [12] FRIČ, R.-KEMOTO, N.: Sequential envelope revisited, Abstracts of the 8th Prague Topological Symposium, Part B: Extended abstracts, Prague, 1996, pp. 126-134.
- [13] FRIČ, R.-KENT, D. C.: The finite product theorem for certain epireflections, Math.Nachr. 150 (1991), 7-14.10.1002/mana.19911500102
- [14] FRIČ, R.-MCKENNON, K.-RICHARDSON, G. D.: Sequential convergence in C(X), in: Convergence Structures and Applications to Analysis, Frankfurt/Oder, 1978, Abh. Akad. Wiss. DDR, Abt. Math. Natur. Technik, Vol. 1979, Akademie-Verlag, Berlin, 1980, pp. 56-65.
- [15] FRIČ, R.-PAPČO, M.: On probability domains II, Internat. J. Theoret. Phys. 50 (2011), 3778-3786.10.1007/s10773-011-0855-2
- [16] GUDDER, S.: Fuzzy probability theory, Demonstratio Math. 31 (1998), 235-254.
- [17] KÔPKA, F.-CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21-34.
- [18] JUREČKOVÁ, M.: The measure extension theorem for MV -algebras, Tatra Mt. Math. Publ. 6 (1995), 56-61.
- [19] KENT, D. C.-RICHARDSON, G. D.: Two generalizations of Novák’s sequential Envelope, Math. Nachr. 19 (1979), 77-85.10.1002/mana.19790910106
- [20] KRATOCHVĺL, P.: Multisequences and measure, in: General Topology and its Relations to Modern Analysis and Algeba IV, Proc. 4th Prague Topological Sympos., Prague, 1976, Society of Czechoslovak Math. and Phys., Prague, pp. 237-244.
- [21] LAVRENTIEV, M.: Contributions a la théorie des ensembles homéomorphes, Fund. Math. 6 (1924), 149-160.10.4064/fm-6-1-149-160
- [22] LOYA, P.: Measure and probability theory: countable additivity, (http://www.math.binghamton.edu/paul/505-S08/505-7.pdf)
- [23] MARCZEWSKI (-SZPILRAJN), E.: On absolutely measurable sets and functions, in: Collected Mathematical Papers, Polish Academy of Sciences, Warszaw, 1966, pp. 160-18.
- [24] NOVÁK, J.: ¨Uber die eindeutigen stetigen Erweiterungen stetiger Funktionen, Czechoslovak Math. J. 8 (1958), 344-355.10.21136/CMJ.1958.100309
- [25] NOVÁK, J.: On the sequential envelope, in: General Topology and its Relations to Modern Analysis and Algeba, Proc. 1st Prague Topological Sympos., Prague, 1961, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1962, pp. 292-294.
- [26] NOVÁK, J.: On convergence spaces and their sequential envelopes, Czechoslovak Math. J. 15 (1965), 74-100.10.21136/CMJ.1965.100655
- [27] NOVÁK, J.: On sequential envelopes defined by means of certain classes of functions, Czechoslovak Math. J. 18 (1968), 450-456.10.21136/CMJ.1968.100845
- [28] PAPČO, M.: On measurable spaces and measurable maps, Tatra Mt. Math. Publ. 28 (2004), 125-140.
- [29] PAPČO, M.: On effect algebras, Soft Comput. 12 (2007), 26-35.10.1007/s00500-007-0171-1
- [30] RIEČAN, B.-MUNDICI, D.: Probability on MV-algebras, in: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869-910.10.1016/B978-044450263-6/50022-1
- [31] RIEČAN, B.-NEUBRUNN, T.: Integral, Measure, and Ordering. Kluwer Acad. Publ., Dordrecht, 1997.10.1007/978-94-015-8919-2
- [32] ZADEH, L. A.: Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421-427. 10.1016/0022-247X(68)90078-4