Have a personal or library account? Click to login
Abstract Pythagorean Theorem and Corresponding Functional Equations Cover

Abstract Pythagorean Theorem and Corresponding Functional Equations

By: Roman Ger  
Open Access
|Aug 2013

References

  1. [1] BERRONE, L. R.: The associativity of the Pythagorean law, Amer. Math. Monthly 116 (2009), 936-939.10.4169/000298909X477078
  2. [2] DUBIKAJTIS, L.: The axioms of S-geometry (oral communication; presented also at the symposium on geometry (Rome, July 1982)).
  3. [3] GER, R.: A consistency equation for three geometries, Aequationes Math. 29 (1985), 50-55.10.1007/BF02189814
  4. [4] JÁRAI, A.-MAKSA, GY.-PÁLES, ZS.: On Cauchy-differences that are also quasi sums Publ. Math. Debrecen 65 (2004), 381-398.
  5. [5] MAKSA, GY.: Oral communication, The 10th Debrecen-Katowice Seminar on Functional Equations and Inequalities, 2010, Zamárdi, Hungary.
DOI: https://doi.org/10.2478/tmmp-2013-0020 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 67 - 75
Published on: Aug 13, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Roman Ger, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.