Have a personal or library account? Click to login
Partial Covering of a Sphere with Random Number of Spherical Caps Cover

Partial Covering of a Sphere with Random Number of Spherical Caps

By: Tomasz Gronek and  Ewa Schmeidel  
Open Access
|Jul 2013

References

  1. [1] AGARWAL, R. P.: Difference Equations and Inequalities. Theory, Methods and Applications. Marcel Dekker, Inc., New York, 2000.10.1201/9781420027020
  2. [2] DWORETZKI, A.: On covering a circle by random placed arcs, Proc. Nat. Acad. Sci. 42 (1956), 199-203.10.1073/pnas.42.4.19952825116589849
  3. [3] DUMER, I.: Covering spheres with spheres, Discrete Comput. Geom. 38 (2007), 665-679.10.1007/s00454-007-9000-7
  4. [4] ELAYDI, S. N.: An Introduction to Difference Equations (3rd ed.), in: Undergrad. Texts Math., Springer, New York, 2005.
  5. [5] FLATTO, L.: Limit theorem for random covering a circle, Israel J. Math. 15 (1973), 167-184.10.1007/BF02764603
  6. [6] FLATTO, L.-NEWMAN, D. J.: Random coverings, Acta Math. 138 (1977), 241-264.10.1007/BF02392317
  7. [7] GILBERT, E. N.: Probability of covering a sphere with n circular caps, Biom. J. 52 (1965), 323-330.
  8. [8] GRONEK, T.: On the random dislocation of three circular caps on a surface of the sphere, Fasc. Math. 17 (1987), 109-117.
  9. [9] GRONEK, T.: The random dislocation of three circular caps with different radii on thesphere, Fasc. Math. 17 (1987), 119-136.
  10. [10] HOLST, L.: On the lenth of the pieces of a stick broken at random, J. Appl. Probab. 17 (1980), 623-643.10.2307/3212956
  11. [11] KELLERER, A. M.: On the number of clumps resulting from the overlap of randomlyplaced figures in a plane, J. Appl. Probab. 20 (1983), 126-135.10.2307/3213726
  12. [12] KELLEY, W. G.-PETERSON, A. C.: Difference Equations. An Introduction with Applications (2nd ed.). Academic Press, San Diego, 2001.
  13. [13] KENDALL, M.-MORAN, P.: Geometrical Probability. Griffin, London, 1963.
  14. [14] KOSCHITZKI, S.: Some stereological problems for random discs in R3, Math. Operationsforsch. Statist. Ser. Statist. 11 (1980), 75-83.
  15. [15] MAĆKOWIAK-ŁYBACKA, K.: Losowy podział kwadratu, Fasc. Math. 8 (1974), 95-104. (In Polish)
  16. [16] MAEHARA, H.: On the intersection graph of random caps on a sphere, European J. Combin. 25 (2004), 707-718.10.1016/j.ejc.2003.10.005
  17. [17] MAEHARA, H.: The length of the shortest edge of a graph on a sphere, European J. Combin. 23 (2002), 713-717.10.1006/eujc.2002.0598
  18. [18] MADRIA, K. V.: Statistics of Directional Data. Academic Press, New York, 1972.
  19. [19] MANNION, D.: Sequential random displacements of points in an interval, J. Appl. Probab. 20 (1983), 251-263.10.2307/3213799
  20. [20] MORAN, P.-FAZEKAS, S.: Random circles on a sphere, Biom. J. 49 (1962), 389-395.
  21. [21] SANTALO, L. A.: Integral Geometry and Geometric Probability. Addison-Wesley, London, 1976.
  22. [22] STEVENS, W. J.: Solution to a geometrical problem in probability, Ann. Eugen. 2 (1939), 315-320.10.1111/j.1469-1809.1939.tb02216.x
  23. [23] SUGIMOTO, T.-TANEMURA, M.: Random sequential covering of a sphere with identicalspherical caps, Forma 16 (2001), 209-212.
  24. [24] YADIN, M.-ZAKS, S.: Random coverage of a circle with applications to a shadowingproblems, J. Appl. Probab. 19 (1982), 562-577.10.2307/3213514
DOI: https://doi.org/10.2478/tmmp-2013-0006 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 73 - 82
Published on: Jul 4, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Tomasz Gronek, Ewa Schmeidel, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.