Have a personal or library account? Click to login
Asymptotic Properties of Third-Order Nonlinear Differential Equations Cover

Asymptotic Properties of Third-Order Nonlinear Differential Equations

Open Access
|Jul 2013

References

  1. [1] AGARWAL, R. P.-GRACE, S. R.-O’REGAN, D.: On the oscillation of certain functionaldifferential equations via comparison methods, J. Math. Anal. Appl. 286 (2003), 577-600.10.1016/S0022-247X(03)00494-3
  2. [2] AGARWAL, R. P.-GRACE, S. R.-SMITH, T.: Oscillation of certain third order functionaldifferential equations, Adv. Math. Sci. Appl. 16 (2006), 69-94.
  3. [3] BACULÍKOVÁ, B.-ĎZURINA, J.: Oscillation of third-order neutral differential equations, Math. Comput. Modelling 52 (2010), 215-226.10.1016/j.mcm.2010.02.011
  4. [4] BACULÍKOVÁ, B.-AGARWAL, R. P.-LI, T.-ĎZURINA, J.: Oscillation of thirdordernonlinear functional differential equations with mixed arguments, Acta Math. Hungar. 134 (2012), 54-67.10.1007/s10474-011-0120-4
  5. [5] BACULÍKOVÁ, B.-ĎZURINA, J.: Asymptotic and oscillatory behavior of higher orderquasilinear delay differential equations, Electron. J. Qual. Theory Differ. Equ. 89 (2012), 1-10.10.14232/ejqtde.2012.1.89
  6. [6] CECCHI, M.-DOŠLÁ, Z.-MARINI, M.: On third order differential equations with propertyA and B, J. Math. Anal. Appl. 231 (1999), 509-525.10.1006/jmaa.1998.6247
  7. [7] ĎZURINA, J.: Asymptotic properties of third order delay differential equations, Czech. Math. J. 45 (1995), 443-448.10.21136/CMJ.1995.128546
  8. [8] ĎZURINA, J.: Comparison theorems for functional differential equations with advancedargument, Boll. Unione Mat. Ital., VII. Ser., A 7 (1993), 461-470.
  9. [9] ĎZURINA, J.-STAVROULAKIS, I. P.: Oscillation criteria for second-order delay differentialequations, Appl. Math. Comput. 140 (2003), 445-453.
  10. [10] ERBE, L. H.-KONG, Q.-ZHANG, B. G.: Oscillation Theory for Functional DifferentialEquations. Marcel Dekker, New York, 1994.
  11. [11] GRACE, S. R.-AGARWAL, R. P.-PAVANI, R.-THANDAPANI, E.: On the oscillationof certain third order nonlinear functional differential equations, Appl. Math. Comput. 202 (2008), 102-112.
  12. [12] GYÖRI, I.-LADAS, G.: Oscillation Theory of Delay with Applications. Clarendon Press, Oxford, 1991.
  13. [13] HASSAN, T.: Oscillation of third order delay dynamic equation on time scales, Math. Comput. Modelling 49 (2009), 1573-1586.10.1016/j.mcm.2008.12.011
  14. [14] KOPLATADZE, R.-KVINIKADZE, G.-STAVROULAKIS, I. P.: Properties A and Bof n-th order linear differential equations with deviating argument, Georgian Math. J. 6 (1999), 553-566.
  15. [15] KUSANO, T.-NAITO, M.: Comparison theorems for functional differential equationswith deviating arguments, J. Math. Soc. Japan 3 (1981), 509-533.
  16. [16] LADDE, G. S.-LAKSHMIKANTHAM, V.-ZHANG, B. G.: Oscillation Theory of DifferentialEquations with Deviating Arguments. Marcel Dekker, New York, 1987.
  17. [17] PARHI, N.-PARDI, S.: On oscillation and asymptotic property of a class of third-orderdifferential equations, Czech. Math. J. 49 (1999), 21-33.10.1023/A:1022495705823
  18. [18] PHILOS, CH. G.: On the existence of nonoscillatory solutions tending to zero at ∞ fordifferential equations with positive delay, Arch. Math. 36 (1981), 168-178.10.1007/BF01223686
  19. [19] TIRYAKI, A.-AKTAS, M. F.: Oscillation criteria of a certain class of third order nonlineardelay differential equations with damping, J. Math. Anal. Appl. 325 (2007), 54-68.10.1016/j.jmaa.2006.01.001
DOI: https://doi.org/10.2478/tmmp-2013-0002 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 19 - 29
Published on: Jul 4, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Blanka Baculíková, Jozef Džurina, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.