Have a personal or library account? Click to login
The Existence of Multiple Solutions for Boundary Value Problem with One Dimensional p-Laplacian Cover

The Existence of Multiple Solutions for Boundary Value Problem with One Dimensional p-Laplacian

By: Boris Rudolf  
Open Access
|Jul 2013

References

  1. [1] BIHARI, I.: A generalization of a lemma of Bellman and its applications to uniquenessproblems of differential equations, Acta Math. Acad. Sci. Hung. 7 (1956), 81-94.10.1007/BF02022967
  2. [2] GAINES, R. E.-MAWHIN J.: Coincidence Degree, and Nonlinear Differential Equations, in: Lecture Notes in Math., Vol. 568, Springer, New York, 1977.10.1007/BFb0089537
  3. [3] KORMAN, PH.: Remarks on Nagumo’s condition, Portugal. Math. 55 (1998), 1-9.
  4. [4] RACHŮNKOVÁ, I.: On the existence of two solutions of the periodic problem for theordinary second order differential equation, Nonlinear Anal. 22 (1994), 1315-1322.10.1016/0362-546X(94)90113-9
  5. [5] RACHŮNKOVÁ, I.-STANĚK, S.-TVRDÝ, M.: Singularities and Laplacians in BoundaryValue Problems for Nonlinear Ordinary Differential Equations, in: Handbook of Differential Equations, Vol. 3, Elsevier, New York, 2006, pp. 607-723.10.1016/S1874-5725(06)80011-8
  6. [6] RUDOLF, B.: Method of lower and upper solutions for a generalized boundary valueproblem, Arch. Math. (Brno) 36 (2000), 595-602.
  7. [7] RUDOLF, B.: An existence and multiplicity result for a periodic boundary value problem, Math. Bohem. 133 (2008), 41-61.10.21136/MB.2008.133946
  8. [8] RUDOLF, B.: On a boundary value problem for differential equation with p-Laplacian, Tatra Mt. Math. Publ. 48 (2011), 189-195.
DOI: https://doi.org/10.2478/tmmp-2013-00012 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 153 - 163
Published on: Jul 4, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Boris Rudolf, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.