Have a personal or library account? Click to login
Inverse Problem for an Ultraparabolic Equation Cover
Open Access
|Jul 2013

References

  1. [1] BEILINA, N.V.: An Inverse Problem with an Integral Overdetermination Condition forWave Equation, Vestnik SamGU 65 (2008), No. 6, 28-39.
  2. [2] CODDINGTON, E. A.- LEVINSON, N.: Theory of Ordinary Differential Equations. Izd. Inostr. Lit., Moskva, 1958. [Russian translation]
  3. [3] IVANCHOV, M. I.: Inverse problem for semilinear parabolic equation, Mat. Stud., 29 (2008) 181-191.
  4. [4] JONES, B.: Determination of a coefficient in a parabolic differential equation. Part I:Existence and uniqueness, J. Mathem. Mech. 11 (1962), No. 6, 907-918.
  5. [5] KOZHANOV, A.I.: An inverse problem with an unknowm coefficient and right-hand sidefor a parabolic equation, J. Inverse Ill-Posed Probl. 10 (2002), No. 6, 611-627.
  6. [6] LAVRENYUK, S.-PROTSAKH, N.: Boundary value problem for nonlinear ultraparabolicequation in unbounded with respect to time variable domain, Tatra Mt. Math. Publ. 38 (2007), 131-146.
  7. [7] LAVRENYUK, S. P.-PROTSAKH, N. P.: Mixed problem for an ultraparabolic equationin an unbounded domain, Ukr. Math. J. 54 (2002), 1053-1066.
  8. [8] LADYZHENSKAYA,O. A. : Boundary Value Problems of Mathematical Physics. Moskva, Nauka, 1973. (In Russian)
  9. [9] LORENZI, A.: Identification problems in Banach spaces for linear first-order partial differentialequations in one space dimension and applications, J. Inverse Ill-Posed Probl. 20 (2012), 65-102.
  10. [10] LORENZI, L.: An identification problem for an ultraparabolic integrodifferential equation, J. Math. Anal. Appl. 234 (1999), 417-456.10.1006/jmaa.1999.6322
  11. [11] PRILEPKO, A. I.- KOSTIN, A. B.: On inverse problems of determining a coefficientin a parabolic equation. II, Sibirsk. Mat. Zh. 34 (1993), No. 5, 147-162.
  12. [12] PROTSAKH, N.: Mixed problem for degenerate nonlinear ultraparabolic equation, Tatra Mt. Math. Publ. 43 (2009), 203-214.
  13. [13] PROTSAKH, N. P.: Properties of a solution of the mixed problem for an ultraparabolicequation with memory term, J. Math. Sci., 183 (2012), 823-834.10.1007/s10958-012-0843-y
  14. [14] TIKHONOV, A. : A uniqueness theorem for the heat equation, Mat. Sb. 42 (1935), No. 2, 199-216. (In Russian)
DOI: https://doi.org/10.2478/tmmp-2013-00011 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 133 - 151
Published on: Jul 4, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Nataliya Protsakh, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.