References
- Abodoye B. E., Chan A. C. P., Abidoye A, Oshodi O. S. (2018/2019). Predicting property price index using artificial intelligence techniques. Evidence from Hong Kong. International journal of housing markets and analysis. DOI: 10.1108/IJHMA-11-2018-0095.
- Abidoye B. R., Chan A. C. P., 2018. Hedonic valuation of reale estate properties in Nigeria. Journal of African Real Estate Research, Vol. 1(1), pp. 1 – 18. DOI: 10.1080/09599916.2017.1286366.
- Abidoye B. R., Chan A. C. P.. 2016/2017. Modeling property values in Nigeria using artificial neural network. Journal of property research, Vol. 1(1), pp. 122 – 140. DOI: 10.15641/jarer.vlil.452.
- Abidoye B. R., Chan A. C. P., 2016. Critical determinants of residential property value: professionals’ perspective. Journal of Facilities management, Vol. 14(3), pp. 283 – 300. DOI: 10.1108/JFM-02-2016-0003.
- Abidoye B. R., Chan A. C. P., 2016. Artificial neural network in property valuation: application framework and research trend. Property Management, Vol. 35(5), pp. 554 – 571. DOI: 10.1108/PM-06-2016-0027.
- Adair A. S., Berry J. N., McGreal W. S., 1991. Land availability, housing demand and the property market. Journal of property research, Vol. 8(1), pp. 59 - 69. DOI: 10.1080/09599919108724020.
- Adair A., McGreal, 1988. The application of multiple regression analysis in property valuation. Journal of valuation, Vol. 6 (1), pp. 57 – 67. DOI: 10.1108/eb008002.
- Adair A. S., Berry J. N., McGreal W. S., 1996. Hedonic modelling, housing submarkets and residential valuation. Journal of property research, Vol. 13, pp. 67 – 83. DOI: 10.1080/095999196368899.
- Adair A., McGreal S., Smyth A., Cooper J., Ryley T., 2000. House price and accessibility: the testing of relationship within the Belfast urban area. Housing studies, 15(5), pp. 699-716. DOI: 10.1080/02673030050134565.
- Arribas I., García F., Guijarro F., Oliver J., Tamošiūnirne R., 2016. Mass appraisal of residential real estate using multilevel modeling. International journal of strategic property management, Vol. 20(1), pp. 77-87. DOI: 10.3846/1648715X.2015.1134702.
- Bao H. X. H., Wan A. T. K., 2004. On the use of Spline Smoothig in estimating hedonic housing price models: empirical evidence using Hong Kong data. Real estate economics, Vol. 32(3), pp. 487 – 507. DOI: 10.1111/j.1080-8620.2004.00100.x.
- Benjamim J. D., Guttery R.S., Sirmans C.F., 2004. Mass appraisal: An introduction to Multiple Regression Analysis for real estate valuation. Journal of Real Estate Practice and Education, Vol. 7, No. 7, pp. 67-77.10.1080/10835547.2004.12091602
- Bahia H. S. I., 2013. A data mininig model by using ANN for predicting real estate market: comparative study. International journal of intelligence science, Vol.3, pp. 162 – 169. DOI: 10.4246/ijis.2013.34017
- Borst R. A., 1991. Artificial neural networks. The next modelling/calibration technology for the assessment community. Property Tax Journal, Vol. 10, No.1, pp. 69 – 94.
- Božić B., Milićević D., Pejić M, Marošan S., 2013. The use of multiple linear regression in property valuation. Geonaukal, Vol. 1(1), pp. 41 - 45.10.14438/gn.2013.06
- Brunson A. L., Buttimer R. J., Rutherford R. C. (1994), Neural Networks, nonlinear specifications, and industrial property values, University of Texas at Arkington, working paper series No., pp. 94-102.
- Calhoun A. C., 2001. Property valuation methods and data in the United States. Housing finance international, Vol. 16(2), pp. 12-23.
- Cechin A., Souto A., González A. M., 2000. Real estete value at porto alege city using artificial neural networks. Proceedings. Sixth Brazilian Symposium on Neural Networks, Vol. 1. DOI: 10.1109/SBRN.2000.889745.
- Chaphalkar N. B., Sandbhor S., 2013. Use of Artificial Intelligence in real property valuation. International journal of engineerin and technology, Vol. 5(3), pp. 2334 – 2337.
- Chiarazzo V., Caggiani L., Marinelli M., Ottomanelli M., 2014. A Neural Network based model for real estate price estimation considering environmental quality of property location. Transportation research procedia, Vol. , pp. 810 – 817. DOI: 10.1016/j.trpro.2014.10.067.
- Cohen J., Cohen P., West G. S., Aiken L.S. Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edition, Mahwah, NJ: Lawrence Erlbaum Associates, 2003.
- Curry B., Morgan P., Silver M., 2002. Neural networks and non-liniear statistical methods: an application to the modelling of price-quality relationships. Computers & operations research, vol. 29, pp. 951 – 969. DOI: 10.1016/S0305-0548(00)00096-4.
- Deaconu A., Diagnosticul și evaluarea întreprinderii. Editura Economică, București, 2019.
- Din A., Hoesli M., Bender A., 2001. Enviromental variables and real estate prices. Urban Studies, Vol. 38 (11), pp. 1989 – 2000.10.1080/00420980120080899
- Do Q., Grudnitski G., 1992. A neural network approach to residential property appraisal. The real Estate Appraisel, December, pp. 8-45.10.1080/10835547.1993.12090712
- Do Q., Grudnitski G., 1993. A neura network analysis of the effect of age on housing values. The Journal of Real estate Research, Spring, pp. 253 – 264.10.1080/10835547.1993.12090712
- D’amato M., 2004. A comparison between mra and rough set theory for mass appraisal. A case in bari. International journal of strategic property management, Vol. 8, pp. 205 – 217. IBBN: 1648-715x.10.3846/1648715X.2004.9637518
- Fletcher M., Mangan J., Raeburn E., 2004.Comparing hedonic models for estimating and forcasting house prices. Property management, Vol. 22(3), pp. 189 – 200. DOI: 10,1108/026374704105448986.
- Foryś I., Gaca R., 2016. Theoretical and practical aspects of qualitative variable descriptions of residential property valuation multiple regression models. The 10th Professor Aleksander Zelias International Conference on modelling and forcasting of socio-economics phenomena.
- García N., Gámez M., Alfaro E., 2008. ANN + GIS: An automated system for property valuation. Neurocomputering, Vol 71, pp. 733 – 742. DOI: 10.1016/j.neucom.2007.07.031.
- González S. A. M., Formoso T. C., 2006. Mass appraisal with genetic fuzzy rule-based systems. Property management, Vol. 24(1), pp. 20-30. DOI: 10.1108/02637470610643092.
- Goodman A. C.,1978. Hedonic prices, price indices and housing markets. Journal of urban economics, Vol. 5(4), pp. 471 – 484. DOI: 10.1016/0094-1190(78)90004-9.
- Goodman A. C., 1978. Andrew Court and the invention of hednic price analysis. Journal of urban economics, Vol. 44, pp. 291-298. DOI: 10.1016/0094-1190(78)90004-9.
- Hu L., He S., Han Z., Xiao H., Su S., Weng M., Cai Z., 2018. Monitoring housing rental prices based on social media: an integrated approach of machine-learning algorithms and hedonic mdeling to inform equitable housing policies. Land use policy, Vol. 82, pp. 657 – 673. DOI: 10.1016/j,landusepol.2018.12.030.
- Isakson H. R., 1998. The review of real estate appraisals using multiple regression analysis. Journal of real estate research, Vol. 15(1/2), pp. 177 – 190. DOI: 10.1080/10835547.1998.12090922.
- James G., Witten D., Hastie T., Tibshirani R., 2013, An introduction to statistical learning with Applications in R. Springer texts in statistics.10.1007/978-1-4614-7138-7
- Kathmann R. M., 1993. Neural network for the mass appraisal of real estate. Computers, environment and urban systems, Vol. 17(4), pp. 373 – 384. , DOI: 10.1016/0198-9715(93)90034-3.
- Kestens Y., Thériault M., Rosiers F. D., 2006. Heterogeneity in hedonic modelling of house prices: looking at buyer’s household profiles. J Geograph syst, Vol. 8, pp. 61 – 96. DOI: 10.1007/s10109-005-0011-8.
- Knopf J. W. 2006. Doing a literature review. PS. Political Science & Politics, vol. 39 (1), pp. 127 – 132.
- Kuburik M., Tomić H., Mastelić Ivić S., 2012. Use of Multicriteria Valuation of Spatial Units in a System of Mass Real Estate Valuation. Prelliminary Communicationâ KiG, Vol. 11(17), pp. 759-774.
- Lenk M. M., Worzala M. E., Silva A., 1997. High-tech valuation: should artificial neural network bypass the human valuer? Jurnal of Property valuation Investment, Vol. 15 (1), pp. 8-26. DOI: 10.1108/14635789710163775.
- Lin C. C., Mohan B. S., 201. Effectiveness comparison of the residential property mass appraisal methodologies in the USA. International Journal of Housing Market and Analysis, Vol. 4 No. , 2011, pp. 224-243.10.1108/17538271111153013
- Limsombuchai V., Gan C., Lee M., 2004. House Price Prediction: Hedonic Price Model vs. Artificial Neural Network. American Journal of Applied Science, Vol.1 (3), pp. 193 – 201.10.3844/ajassp.2004.193.201
- Lin C. C., Mohan A. B., 2011. Effectiveness comparison of the residential property mass appraisal methodologies in the USA. International journal of housing markets and analysis, Vol. 4(3), pp. 224 – 243. DOI: 10.1108/17538271111153013.
- Liu J. G., Zhang X. L., Wu W. P., Application of Fuzzy Neural Network of Real Estate Prediction, Spring-Verlang Berlin Heidelberg, pp. 1187 – 1191.10.1007/11760191_173
- Malpezzi S., 2002. Hedonic pricing models: a selective and applied review. Housing economics and public policy, Ch.5. DOI: https://doi.org/10.1002/9780470690680.ch510.1002/9780470690680.ch5
- McClusey J. W., Borst A. R., 2011. Detecting and validating residential housing submarkets. A geostatistical approach for use in mass appraisal. International journal of housing markets and analysis, Vol. 4(3), pp. 290 – 318. DOI: 10.1108/175382711111530400.
- McCluskey W.m Davis P., Haran M., CcCord M., McIlhatton D., 2012, The potential of artificial neural networks in mass apparaisal: the case revisited. Journal od financial management of property and construction, Vol. 17(3), pp. 274 – 292. DOI: 10.1108/1366431211274371.
- McCluskey J. W., McCord M., Davis T. p., Haran M., McIlhatton D., 2013. Prediction accuracy in mass appraisal: a comparison of modern approaches. Journal of property research, Vol. 30 (4), pp. 239 – 265. DOI: 10.1080/09299916.2013.781204.
- Munakata T., Fundamentals of the New Artificial Intelligence, Springer, New York, 1998.
- Nghiep N., Al C., 2001. Predicting housing value: a comparison of multiple regression analysis and artificial neural networks. Journal of real estate research, Vol. 22(3), pp. 313 – 336. DOI: 10.1080/10835547.2001.12091068.
- Ogwang T., Wang B., 2003. A hedonic price function for a northern BC community. Social indicators research, Vol. 61, pp. 285 – 296. DOI: 10.1023/A:1021905518866.
- Pagourtzi E., Assimakopoulos V., Hatzichristos T., French N., 2003. Real appraisal: a review of valuation methods.Journal of property investment & finance, Vol. 21(4), pp. 383 – 401. DOI: 10.1108/14635780310483656
- Pontus N., 2019. Prediction of residential real estate selling prices using neural networks. KTH Royal Institute of Thenology School of Electrical Engineering and computer science, Stockholm, Sweden.
- Rahman A. N. S., Maimun A. H. N., Razali M. N. M., Ismail S., 2019. The artificial neural network model (ANN) for Malayesian housing market analysis. Journal of the Malayisian institute of planners, Vol. 17(1), pp. 1-9.10.21837/pmjournal.v17.i9.581
- Rossini P., 1997. Artificial Neural Networks versus Multiple Regression in the Valuation of Residential Property. Australia Land Economics Review, 3(1), pp. 1-12.
- Rosen S., 1974. Hedonic prices and implicit markets: product differentiation in pure competition. Journal of political economy, Vol. 8(1), pp. 34 – 55.10.1086/260169
- Rossini P., 1998. Improving the results of artificial neural network models for residential valuation. Fourth annual Pacific-Rim real estate society conference, Perth, Western Australia, pp. 1-18.
- Samaha A. S., Kamakura A. W., 2008. Assessing the market value of real estate property with a geographically weighted stochastic frontier model. Real estate economics, Vol. 36(4), pp. 717 – 751. DOI: 10.1111/j.1540-6229.2008.00228.x.
- Sarip G. A., Hafez B. M., Daud N. M., 2016. Application of fuzzy regression model for real estate price prediction. Malaysian journal of computer science. Vol, 29(1), pp. 15 – 27.10.22452/mjcs.vol29no1.2
- Selim H., 2009. Determinants of house in Turkey: Hedonic regression versus artificial neural network. Expert system with applications, Vol. 36(2), part 2, pp. 2843 2852. DOI: 10.1016/j.eswa.2008.01.044.
- Şipoș C., Crivii A., 2008. Modelul regresiei liniare pentru evaluarea proprietăţilor imobiliares. Revista de evaluare, 2(5).
- Steverson S., 2004. New empirical evidence on heteroscedasticity in hedonic housing models. Journal of housing economics, Vol. 13(2), pp. 136 – 153. DOI: 10.1016/j.jhe.2004.04.004.
- Stoean R., 2008. Reţele neuronale. Neural networks (NN). http://inf.ucv.ro/~rstoean
- Tay D. P. H., Ho D. K. K., 1992. Artificial Inteligenc and the Mass Appraisal of residencial Apartment, Jurnal of Property Valuation & Investment, 10:525-540.10.1108/14635789210031181
- Trippi, R.R., Turban, E., 1992. Neural Networks in Finance and Investing: Using Artificial Intelligence to improve real world performance. Chicago, IL, Probus Publishing.
- Tothăzan H. F., Deaconu A. 2020. Neural Network Artificial Model for Real Estate Appraisal: Logic, controversies, and utility for the Ramanian context. “Ovidius” University Annals, Economic Sciences Series, Vol. XX(22), pp. 1093-1100.
- Tudorel A., Régis B., 2008. Econometrie. București, Editura Economica.
- Watkins C., 1999. Property valuation and the structure of urban housing markets. Journal of property investment & finance, Vol. 17(2), pp. 157-175. Academic paper.10.1108/14635789910258543
- Wilkowski W., Budzyński T., 2006. Application of Neural Networks for Real Estate Valuation. TS86 – Valuations Methods, XXIII FIG Congress, Munich, Germany, October 8-1, 2006.
- Worzala E. M., Lenk M. M., Silva A., 1995, An explanation of neural networks and its application to real estate valuation, Journal of Real Estate Research, Vol. 10, No. 2, pp. 185-202.10.1080/10835547.1995.12090782
- Yalpir S., 2014a. Forecasting residential realpago estate valees with AHP method and integrated GIS. In conference proceedings of people, Building and Enviroment 2014, Czech Republic, pp. 694 – 706.
- Yalpir S., Durduran S. S., Unel F. B., Yolcu M., 2014b. Creating A Valuation Map In GIS Through Artificial Neural Network Methodology: A Case Study. Acta Montanistica Slovaca, Vol. 19(2), p79-89.
- Yilmazer S., Kocaman S., 2020, A mass appraisal assestment study using machine learning based on multiple regression and random forest. Land use popicy, Vol. 90, pp. 1-11. DOI: 10.1016/j.landusepol.2020.104889.
- Zhou G., Ji Yicheng, Chen X., Zhang F., 2018. Artificial neural Networks and the mass appraisal of real estate. International Journal of online engineering (iJOE), Vol. 1(3), pp. 180 – 187.10.3991/ijoe.v14i03.8420
- Zurada J., Levitan S. A., Guan J., 2011. A comparison of regression and Artificial Intelligence methods in a mass appraisal context.10.1080/10835547.2011.12091311
