References
- Rizzi SA, Huff DL, Boyd DD Jr, Bent P, Henderson BS, Pascioni KA, et al. Urban air mobility noise: current practice, gaps, and recommendations. NASA/TP–2020-5007433. 2020.
- Barbara O, Seth L, Roalt A, Schreckenberg D, van Miltenburg M. Association between short-term annoyance and several physiological parameters during different amounts of nocturnal aircraft noise exposure. Trans Aerosp Res. 2020;(4):1–12.
https://doi.org/10.2478/tar-2020-0018 - European Parliament and the Council of the European Union. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off J Eur Union. 2002.
- European Parliament and the Council of the European Union. Regulation (EU) No 598/2014 of the European Parliament and of the Council of 16 April 2014 on the establishment of rules and procedures with regard to the introduction of noise-related operating restrictions at Union airports within a Balanced Approach and repealing Directive 2002/30/EC. Off J Eur Union. 2014.
- European Commission. Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems. Off J Eur Union. 2019.
- European Commission. Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft (Text with EEA relevance.). Off J Eur Union. 2019.
- Christian A, Cabell R. Initial investigation into the psychoacoustic properties of small unmanned aerial system noise. 23rd AIAA/CEAS Aeroacoustics Conference; 2017 Jun 5–9; Denver, CO, USA. Paper No. AIAA 2017-4051.
- Leylekian L, Lebrun M, Lempereur P. An overview of aircraft noise reduction technologies. Aerosp Lab. 2014;(6):1–15.
https://doi.org/10.12762/2014.AL07-01 - Candeloro P, Ragni D, Pagliaroli T. Small-scale rotor aeroacoustics for drone propulsion: a review of noise sources and control strategies. Fluids. 2022;7(8):279.
https://doi.org/10.3390/fluids7080279 - Casalino D, Grande E, Romani G, Ragni D, Avallone F. Definition of a benchmark for low Reynolds number propeller aeroacoustics. Aerosp Sci Technol. 2021;113:106707.
https://doi.org/10.1016/j.ast.2021.106707 - Di Pasquale D, Rona A, Garrett SJ. A selective review of CFD transition models. 39th AIAA Fluid Dynamics Conference; 2009 Jun 22–25; San Antonio, TX, USA. Paper No. AIAA 2009-3812.
- Zarri A, Dell’Erba E, Munters W, Schram C. Aeroacoustic installation effects in multirotorcraft: numerical investigations of a small-size drone model. Aerosp Sci Technol. 2022;128:107762.
https://doi.org/10.1016/j.ast.2022.107762 - Grande E, Romani G, Ragni D, Avallone F, Casalino D. Aeroacoustic investigation of a propeller operating at low Reynolds numbers. AIAA J. 2022;60(2):860–71.
https://doi.org/10.2514/1.J060611 - Sinibaldi G, Marino L. Experimental analysis on the noise of propellers for small UAV. Appl Acoust. 2013;74(1):79–88.
https://doi.org/10.1016/j.apacoust.2012.06.011 - Gojon R, Jardin T, Parisot-Dupuis H. Experimental investigation of low Reynolds number rotor noise. J Acoust Soc Am. 2021;149(6):3813–29.
https://doi.org/10.1121/10.0005068 - Wu H, Jiang H, Zhou P, Zhong S, Zhang X, Zhou G, et al. On identifying the deterministic components of propeller noise. Aerosp Sci Technol. 2022;130:107948.
https://doi.org/10.1016/j.ast.2022.107948 - Podsędkowski M, Konopiński R, Lipian M. Sound noise properties of variable pitch propeller for small UAV. 2022 Int Conf Unmanned Aircraft Syst (ICUAS); 2022 Jun 21–24; Dubrovnik, Croatia. p. 1025–9.
- Podsędkowski M, Konopiński R, Lipian M. Acoustic stall detection of variable pitch propeller for unmanned aerial vehicles. J Intell Robot Syst. 2023;109(3):70.
https://doi.org/10.1007/s10846-023-01997-x - Kekus-Kumor P, Sieradzki A. Experimental investigation of unmanned air vehicle rotor aeroacoustics using benchmark geometries. 52nd Int Congr Noise Control Eng (Inter-noise 2023); 2023 Aug 20–23; Chiba, Japan.
- Vesa JH. Design of an anechoic chamber for aeroacoustic testing and analysis of large UAS propellers [master’s thesis]. Mississippi State (MS): Mississippi State University; 2020.
- Whiteside S, Zawodny N, Fei X, Pettingill NA, Patterson MD, Rothhaar P. An exploration of the performance and acoustic characteristics of UAV-scale stacked rotor configurations. AIAA Sci Technol Forum; 2019 Jan 7–11; San Diego, CA, USA. Paper No. AIAA 2019-1071.
- Simon F, Schiller NH, Zawodny NS, Pettingill NA, Galles MB. Fundamental noise characterization of a ducted propeller in hover. 51st Int Congr Noise Control Eng (Inter-noise 2022); 2022 Aug 21–24; Glasgow, UK.
- Malgoezar AM, Vieira A, Snellen M, Simons DG, Veldhuis LL. Experimental characterization of noise radiation from a ducted propeller of an unmanned aerial vehicle. Int J Aeroacoust. 2019;18(4–5):372–91.
https://doi.org/10.1177/1475472X19852952 - Guo J, Zhou T, Fang Y, Zhang X. Experimental study on a compact lined circular duct for small-scale propeller noise reduction. Appl Acoust. 2021;179:108062.
https://doi.org/10.1016/j.apacoust.2021.108062 - Wang Z, Henricks Q, Zhuang M, Pandey A, Sutkowy M, Harter B, et al. Impact of rotor–airframe orientation on the aerodynamic and aeroacoustic characteristics of small unmanned aerial systems. Drones. 2019;3(3):56.
https://doi.org/10.3390/drones3030056 - Zawodny NS, Boyd DD. Investigation of rotor–airframe interaction noise associated with small-scale rotary-wing unmanned aircraft systems. J Am Helicopter Soc. 2020;65(1):1–17.
https://doi.org/10.4050/JAHS.65.012007 - Wiedemann AD, Fuller C, Pascioni KA. Reducing rotor-airframe interaction noise in drones using a curved support rod. AIAA J. Forthcoming 2025;Article in Advance:1–5.
- Wei Y, Xu F, Bian S, Kong D. Noise reduction of UAV using biomimetic propellers with varied morphologies leading-edge serration. J Bionic Eng. 2020;17:767–79.
https://doi.org/10.1007/s42235-020-0054-z - Intaratep N, Alexander WN, Devenport WJ, Grace SM, Dropkin A. Experimental study of quadcopter acoustics and performance at static thrust conditions. 22nd AIAA/CEAS Aeroacoustics Conf; 2016 May 30–Jun 1; Lyon, France. Paper No. AIAA 2016-2873.
- Whelchel J, Alexander WN, Intaratep N. Propeller noise in confined anechoic and open environments. AIAA Sci Technol Forum; 2020 Jan 6–10; Orlando, FL, USA. Paper No. AIAA 2020-1252.
- Lu Z, Debiasi M, Khoo BC. Acoustic characteristics of a multi-rotor MAV and its noise reduction technology. 45th Int Congr Noise Control Eng (Inter-noise 2016); 2016 Aug 21–24; Hamburg, Germany. p. 393–403.
- Ma Z, Wu H, Mao J, Liu G, Zhou P, Zhong S. Noise measurement of a quadrotor drone in an anechoic chamber. 52nd Int Congr Noise Control Eng (Inter-noise 2023); 2023 Aug 20–23; Chiba, Japan. p. 4659–70.
- Zhou T, Jiang H, Huang B. Quad-copter noise measurements under realistic flight conditions. Aerosp Sci Technol. 2022;124:107542.
https://doi.org/10.1016/j.ast.2022.107542 - International Organization for Standardization. ISO 3745:2012. Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for anechoic rooms and hemi-anechoic rooms. Geneva: ISO; 2012.
- Weitsman D, Stephenson JH, Zawodny NS. Effects of flow recirculation on acoustic and dynamic measurements of rotary-wing systems operating in closed anechoic chambers. J Acoust Soc Am. 2020;148(3):1325–36.
https://doi.org/10.1121/10.0001901 - Ma Z, Zhou P, Zhang X, Zhong S. Experimental assessment of the flow recirculation effect on the noise measurement of a free-flying multi-rotor UAS in a closed anechoic chamber. Acoust Aust. 2024;52:313–22.
https://doi.org/10.1007/s40857-024-00327-x