References
- Lammering T, Stumpf E. Integration of aircraft systems into conceptual design synthesis. 2014.
- Mitrakhovych MM. Skladni tekhnichni systemy. Systemne matematychne zabezpechennya proektnykh rishen [Complex technical systems. Systematic mathematical support for design decisions]. Instytut Problem Matematychnykh Mashyn i System. Kyiv: “Nichlava”. 1998. [in Ukrainian]
- Eger S.M, Myshin VF, Lyseitsev NK et al. Proyektirovaniye samoletov: Uchebnik dlya vuzov. [Airplane project: Handbook for universities]. Mashinostroyeniye. 1983. [in Russian]
- Torenbik E. Proyektirovaniye dozvukovykh samoletov. [Design of subsonic aircraft]. Mashinostroyeniye. 1983:647. [in Russian]
- Akimov VM, Bakulev VI et al. Teoriya i raschet vozdushno-reaktivnykh dvigateley [Theory and calculations of air-breathing engines]. Ed. S.M. Shlyakhtenko. Mashinostroyeniye. 1987: 568. [in Russian]
- Loginov VV. Analiz primeneniya silovykh ustanovok na samoletakh transportnoy aviatsii [Analysis of the use of power plants in transport aircraft]. VV. Loginov, Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel’nykh apparatov. [Design and manufacturing issues of aerospace structures.]. Kharkív: NAU named after M.Ê. Zhukovs’kogo “KhAI” 2006;1(44):74–78. [in Ukrainian]
- Haran K, Madavan N, O’Connell TC, editors. Electrified Aircraft Propulsion: Powering the Future of Air Transportation. Cambridge: Cambridge University Press; 2021. https://doi.org/10.1017/9781108297684.
- Pornet C, Isikveren AT. Conceptual design of hybrid-electric transport aircraft. Progress in Aerospace Sciences. 2015;79:114–135.
- Pornet C. Conceptual Design Methods for Sizing and Performance of Hybrid-Electric Transport Aircraft. Germany: Technischen Universität München; 2018. https://mediatum.ub.tum.de/doc/1399547/document.pdf
- Gil AA, Silva HL. Hybrid-Electric Aircraft: Conceptual Design, Structural and Aeroelastic Analyses. 2017.
- Commercial engines. Accessed 14.10.2024. https://www.prattwhitney.com/en/sustainability/smarter-technologies.
- Electrified Aircraft. Accessed 14.10.2023. https://www.collinsaerospace.com/what-we-do/capabilities/electrified-aircraft.
- Decarbonization. Accessed 14.10.2023. https://www.safran-group.com/decarbonization.
- A Guide to Understanding Battery Specifications; MIT Electric Vehicle Team: December 2008. Accessed 15.01.2020. Available online: https://web.mit.edu/evt/summary_battery_specifications.pdf
- Vision. https://www.h2fly.de/vision. Accessed 20.04.2023.
- Hydrogen & Fuel Cells. Research, development, and innovation to advance hydrogen and fuel cells. https://www.pnnl.gov/hydrogen-fuel-cells. Accessed 25.03.2023.
- Abu Salem K, Palaia G, Quarta AA. Review of hybrid-electric aircraft technologies and designs: Critical analysis and novel solutions. Progress in Aerospace Sciences. 2023 Aug;141:100924. Available from: https://doi.org/10.1016/j.paerosci.2023.100924
- Sahoo S, Zhao X, Kyprianidis K. A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace. 2020 Apr 13;7(4):44. Available from: https://doi.org/10.3390/aerospace7040044
- Palaia G, Abu Salem K, Quarta AA. Parametric Analysis for Hybrid–Electric Regional Aircraft Conceptual Design and Development. Applied Sciences. 2023 Oct 9;13(19):11113. Available from: https://doi.org/10.3390/app131911113
- Isikveren AT, Kaiser S, Pornet C, Vratny PC. Pre-design strategies and sizing techniques for dual-energy aircraft. Aircraft Engineering and Aerospace Technology. 2014 Sep 30;86(6):525–542. Available from: https://doi.org/10.1108/aeat-08-2014-0122
- Moore MD, Fredericks B. Misconceptions of Electric Aircraft and their Emerging Aviation Markets. 52nd Aerosp Sci Meet 13 17 January 2014 National Harb Md. 2014. AIAA 2014-0535. https://doi.org/10.2514/6.2014-0535.
- Pornet C. Hybrid and Universally-Electric Aircraft Concepts. AccessScience, McGraw-Hill Yearbook of Sciences and Technology (McGraw-Hill Education, 2014), http://dx.doi.org/10.1036/1097-8542.YB150553.
- Portnikov BA. Kriterii tekhniko-ekonomicheskoy effektivnosti aviatsionnoy spetsializirovannoy sistemy [Performance and economic criteria for a specialized operating system]. Vestnik Orenburgskogo Gosudarstvennogo Universiteta. 2007(5):171–180. [in Russian]
- Levitskiy SV, Levitskaya YeV. Metodika otsenki transportnoy effektivnosti magistral’nogo passazhirskogo samoleta [Methodology for assessing the efficiency of long-range passenger aircraft transport]. Nauchnyy Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta Grazhdanskoy Aviatsii. 2014;(205):99–106. [in Russian]
- Van der Velden A. Aircraft Economy for Design Tradeoffs. In: Sobieczky H, editor. New Design Concepts for High Speed Air Transport. International Centre for Mechanical Sciences, Vol. 366.Vienna: Springer; 1997. Available from: https://doi.org/10.1007/978-3-7091-2658-5_2
- Seitz A. Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design. Germany: Technischen Universität München; 2012.
- Kappler G. An integrated economic evaluation of preliminary aero-engine design concepts. Aachen: Institut fur Luftfahrtantriebe der Universitat Stuttgart; 2013.
- Anderson JD. Fundamentals of aerodynamics. 6th ed. McGraw-Hill; 2016.
- Statisticheskiye dannyye zarubezhnykh passazhirskikh samoletov (po dannym inostrannoy pechati) [Statistics of foreign passenger aircraft (according to foreign press)]. Obzor TSAGI. 1981;(601):240. [in Russian]
- Benzakein MJ. What does the future bring? A look at technologies for commercial aircraft in the years 2035–2050. Propulsion and Power Research. 2014;3(4):165–174.