Have a personal or library account? Click to login
Enhancing Command Recognition in Air Traffic Control Through Advanced Classification Techniques Cover

Enhancing Command Recognition in Air Traffic Control Through Advanced Classification Techniques

Open Access
|Jun 2024

References

  1. Miller C. U.S. Programme for Development of Satellite Services for Air Traffic Control. J Navig. 1990;43(1):26–31. http://doi.org/10.1017/S0373463300013783
  2. Newbery RR. Integration of advanced displays, FMS, speech recognition and data link. J Navig. 1985;38(3):463–466. http://doi.org/10.1017/S037346330003287
  3. Ness M, Herbert M. A route planning and driver information system for PLEIADES. J Navig. 1994;47(2):159–164. http://doi.org/10.1017/S0373463300012078
  4. Helmke H, Klakow D, Motlicek P, Srinivasamurthy A, Szaszak G, Oualil Y. A context-aware speech recognition and understanding system for air traffic control domain. 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). http://doi.org/10.1109/ASRU.2017.8268964
  5. Chen S, Chong SR, Kopald H, Levonian Z, Wei Y. Read back error detection using automatic speech recognition. Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM2017). http://doi.org/10.21437/Interspeech.2019-1962. Available from: http://atmseminar.org/seminarContent/seminar12/papers/12th_ATM_RD_Seminar_paper_20.pdf
  6. Cerna A, Ehr H, Kleinert M, Helmke H, Kern C, Klakow D, et al. Semi-supervised adaptation of assistant based speech recognition models for different approach areas. 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). http://doi.org/10.1109/DASC40568.2018. Available from: https://ieeexplore.ieee.org/document/8569879
  7. Lin Y. Spoken instruction understanding in air traffic control: challenge, technique, and application. Aerospace. 2021. http://doi.org/10.3390/aerospace8030065 Available from: https://www.mdpi.com/journal/aerospace.
  8. Helmke H, Klakow D, Schmidt A, Schulder M, Oualil Y. Real-time integration of dynamic context information for improving automatic speech recognition. INTERSPEECH 2015. Available from: https://isca-speech.org/archive/interspeech_2015/papers/i15_2107.pdf
  9. Holone H, Nguyen V. Possibilities, challenges, and the state of the art of automatic speech recognition in air traffic control. World Acad Sci Eng Technol Int J Comput Inf Eng. 2015;9(8). http://doi.org/10.5281/zenodo.1108428
  10. Bakr M. A linguistic approach to marine communication. J Navig. 1979;32(2):171–179. http://doi.org/10.1017/S0373463300037887
  11. Narayanan S, Balasundaram SR. Error detection using syntactic analysis for air traffic speech. Proceedings of the Second International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol 203. 2021.
  12. Delpech E, Lancelot F, Farinas J, Pellegrini T. The Airbus air traffic control speech recognition 2018 challenge: towards ATC automatic transcription and call sign detection. InterSpeech 2019. http://doi.org/10.21437/Interspeech.2019-1962
  13. Lamere P, Kwok P, Gouvêa E, Raj B, Singh R, Walker W, Warmuth MK, Wolf P. The CMU SPHINX-4 speech recognition system. 2001.
  14. Hofbauer K, Petrik S, Hering H. The ATCOSIM corpus of non-prompted clean air traffic control speech. 2008. Available from: http://www.lrec-conf.org/lrec2008/
  15. Helmke H, Himawan I, Motlicek P, Oualil Y, Srinivasamurthy A, Szaszák G. Semi-supervised learning with semantic knowledge extraction for improved speech recognition in air traffic control. INTERSPEECH 2017. http://doi.org/10.21437/Interspeech.2017-1446
Language: English
Page range: 44 - 65
Submitted on: Mar 10, 2024
|
Accepted on: Apr 29, 2024
|
Published on: Jun 12, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Narayanan Srinivasan, S. R. Balasundaram, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.