




Figure 1.
![Propeller thrust test stand – visualisation [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=aceae075a6167110d3d70389e375c2a664a478de9786c4ec70b778477e856ae0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2.
![The principle of measuring the propeller thrust on the presented stand [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=f02298cee95e31aa72454309d8deb5055a5037b1a47331d3f49fe0167c53c4cf&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3.
![Map of reduced stress according to the Huber-Von-Mises hypothesis with a point measurement in the vicinity of the calculated transverse opening [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=5f2a0b7a509c74b932eb94078f810eafaa9e026b82925ba4c039dd1474fef322&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4.
![Structural calculation: (top) mounting plate model; (bottom) map of the mounting plate effort according to the Huber-Von-Mises hypothesis [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=48a5016d2f4509edbe49340d8e099ad6285353f84fc78cd17eb47cc2856ee4c5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5.
![Propeller thrust test stand – electrical diagram [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=4dde6ffec2b805c372bf74b9493d9ed54918145d4e289987a5d613e7573be790&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6.
![Dynamic model – block diagram [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=f8e09242ab98fff525f44465d4e4c262e445f292a52040b73131a0fd6090dbe0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7.
![Construction of regulators in the MATLAB Simulink program [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=f34ea81dc226e15ddd039e11e676df9a8bdb32fb1dd1d1ca9f2e576f9f1f1d75&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 8.
![Propeller model with moments of inertia [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_008.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=e60dd2d0526c2d970e69931351e4a607dd2ba91016e344c6984da8ac17816ce2&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 9.
![Model of the entire system built in MATLAB Simulink [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_009.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=3181606d101f0017f77cf2c5766fbdf91de7c485ab0a14593bf67c67c24af674&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 10.

Figure 11.
![Course of step excitations for: 1st cycle (left) and 2nd cycle (right) [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_011.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=bb0807abef47142d8b16beeb748d7624a18eae596abd546c345f228219bccbc3&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 12.
![Summary of Aerobat propeller rotational speed and torque in the 1st cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_012.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=ab867b270239910c536d870f0746aaa6f6cef5129fe6691e0ed7851ddbae2db3&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 13.
![Summary of Aerobat propeller rotational speed and torque in the 2nd cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=894af1fe2318b1bf33252b3fab348e6d71da051e56f9d700edf4a593a48db45e&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14.
![Comparison of actual results with the simulation results for Aerobat propeller [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_014.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=26ee30bf1d2bf32be7ff6e3ebfd5409e5076db0370ba86243bd31eff8c2d4ff4&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 15.
![Course of step excitations for 1st cycle (left) and 2nd cycle (right) [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_015.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=5a2f488316f75a9bc120decd27c6706d3eb76a9dade80020093fb7d9e2bf8563&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 16.
![Summary of Łukasiewicz – Institute of Aviation propeller rotational speed and torque in the 1st cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_016.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=5e9d07d3ce9d29b496bb828009d3b8961095265e05010f11f8fa0fe7c6a8b9ac&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 17.
![Summary of Łukasiewicz – Institute of Aviation propeller rotational speed and torque in the 2nd cycle [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_017.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=440aa0a19cc077efb62991b8b1d425fed28913351ab3d1b768e12706b5d21fc4&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 18.
![Comparison of actual results with the simulation results for the carbon composite Łukasiewicz – Institute of Aviation propeller [own elaboration].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647392104e662f30ba54262a/j_tar-2023-0006_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251030%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251030T150754Z&X-Amz-Expires=3600&X-Amz-Signature=43ae171110a0b4c973f04a0f58e8463ec53a429695073914ec416fcf12065b24&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Test stand overview [8–10]_
| Test Stand | Thrust | Torque | Propeller diameter | Electric parameters | RPM |
|---|---|---|---|---|---|
LY-70KGF Thrust Stand and Dynamometer Wing Flayng | ±70 daN | ±50 Nm | Max ~ 1.52 m | Current: 0–300 A | 60,000 – 150,000 RPM |
WF-CO-30KGF Coaxial Thrust Stand Wing Flayng | ±30 daN | ±20 Nm | Max ~1.00 m | Current: 0–150 A | 60,000 – 150,000 RPM |
Series 1780 Test Stand TYTO Robotics | ±75 daN | ±48 Nm | Max ~1.77 m | Current: 0–500 A | 100,000 RPM |
Modular Stand for testing aircraft electric propulsion systems NASA | ±225 daN | ±200 Nm | Max ~1.77 m | N/A | 20,000 RPM |
Rotor/propeller test stand in Hover Institute of Aviation | ±3,000 daN | ±4,800 Nm | Max ~10 m | Electric power: 315 kW | Min. 126 RPM, max. 1,500 RPM |
Initial parameters, step function of the torque and the corresponding currents - 1st cycle_
| No. | Starting point - torque (Nm) | RMS current corresponding to torque (A) | Ending point - torque (Nm) | RMS current corresponding to torque (A) |
|---|---|---|---|---|
| 1 | 8.5 | 14.2 | ||
| 2 | 6.0 | 10.0 | 10.0 | 16.7 |
| 3 | 14.0 | 23.3 | ||
| 4 | 25.5 | 42.5 | ||
| 5 | 23.0 | 38.3 | 27.0 | 45.0 |
| 6 | 31.0 | 51.7 | ||
| 7 | 35.5 | 59.2 | ||
| 8 | 33.0 | 55.0 | 37.0 | 61.7 |
| 9 | 41.0 | 68.3 | ||
| 10 | 47.5 | 79.2 | ||
| 11 | 45.0 | 75.0 | 49.0 | 81.7 |
| 12 | 53.0 | 88.3 | ||
| 13 | 60.5 | 100.8 | ||
| 14 | 58.0 | 96.7 | 62.0 | 103.3 |
| 15 | 66.0 | 110.0 | ||
| 16 | 70.5 | 117.5 | ||
| 17 | 68.0 | 113.3 | 72.0 | 120.0 |
| 18 | 76.0 | 126.7 |
Initial parameters, step function of the torque and the corresponding currents — 2nd cycle_
| No. | Starting point - torque (Nm) | RMS current corresponding to torque (A) | Ending point - torque (Nm) | RMS current corresponding to torque (A) |
|---|---|---|---|---|
| 1 | 6.0 | 10.0 | 76.0 | 126.7 |
| 2 | 23.0 | 38.3 | ||
| 3 | 33.0 | 55.0 | ||
| 4 | 45.0 | 75.0 | ||
| 5 | 58.0 | 96.7 | ||
| 6 | 68.0 | 113.3 |
Comparison of actual results with the simulation results for the same RMS currents, Aerobat propeller_
| Experimental research | Numerical model research | |||
|---|---|---|---|---|
| Current (A) | Torque (Nm) | Rotational speed (RPM) | Torque (Nm) | Rotational speed (RPM) |
| 3.86 | 2.4 | 640.0 | 2.3 | 720.0 |
| 8.76 | 5.3 | 1,065.0 | 5.3 | 1,087.0 |
| 17.45 | 10.7 | 1,550.0 | 10.5 | 1,534.0 |
| 29.08 | 18.0 | 2,030.0 | 17.5 | 1,980.0 |
| 36.80 | 22.7 | 2,280.0 | 22.1 | 2,226.0 |
| 44.70 | 27.8 | 2,520.0 | 26.8 | 2,456.0 |
| 53.6 | 33.1 | 2,755.0 | 32.2 | 2,688.0 |
| 66.5 | 40.5 | 3,020.0 | 39.9 | 2,995.0 |
Adjustment time for Łukasiewicz — Institute of Aviation propeller — 2nd cycle_
| Lp. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
|---|---|---|---|
| 1 | 6.0 | 76.0 | 3.4 |
| 2 | 23.0 | 76.0 | 3.1 |
| 3 | 33.0 | 76.0 | 3.0 |
| 4 | 45.0 | 76.0 | 2.9 |
| 5 | 58.0 | 76.0 | 2.8 |
| 6 | 68.0 | 76.0 | 2.2 |
Comparison between the actual results and the simulation results for the same RMS currents, for the carbon composite Łukasiewicz — Institute of Aviation propeller_
| Experimental research | Numerical model research | |||
|---|---|---|---|---|
| Present current (A) | Torque (Nm) | Rotational speed (RPM) | Torque (Nm) | Rotational speed (RPM) |
| 11.09 | 7.62 | 565.0 | 6.65 | 540.0 |
| 23.99 | 15.35 | 825.0 | 14.39 | 794.0 |
| 38.96 | 24.40 | 1,045.0 | 23.38 | 1,011.0 |
| 54.32 | 33.37 | 1,215.0 | 32.69 | 1,195.0 |
| 63.99 | 38.73 | 1,305.0 | 38.39 | 1,296.0 |
| 75.37 | 45.15 | 1,405.0 | 45.22 | 1,406.0 |
| 89.29 | 52.30 | 1,515.0 | 53.57 | 1,531.0 |
| 103.81 | 59.35 | 1,615.0 | 62.29 | 1,651.0 |
| 121.99 | 66.91 | 1,715.0 | 73.19 | 1,789.0 |
| 137.16 | 72.61 | 1,770.0 | 82.30 | 1,897.0 |
Moments of inertia of elements included in the model_
| I (kg mm2) | |
|---|---|
| The knot from the engine to the propeller attachment | 13,503 |
| Propeller mounting hub | 4,350 |
| Propeller | 246,083 |
Adjustment time for Aerobat propeller — 1st cycle_
| No. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
|---|---|---|---|
| 1 | 6.0 | 8.5 | 3.9 |
| 2 | 10.0 | 3.9 | |
| 3 | 14.0 | 3.9 | |
| 4 | 23.0 | 25.5 | 2.5 |
| 5 | 27.0 | 2.5 | |
| 6 | 31.0 | 2.5 | |
| 7 | 33.0 | 35.5 | 2.1 |
| 8 | 37.0 | 2.1 | |
| 9 | 41.0 | 2.1 | |
| 10 | 45.0 | 47.5 | 2.0 |
| 11 | 49.0 | 2.0 | |
| 12 | 53.0 | 2.0 |
Adjustment time for Łukasiewicz — Institute of Aviation propeller — 1st cycle_
| No. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
|---|---|---|---|
| 1 | 8.5 | 6.0 | |
| 2 | 6 | 10.0 | 6.0 |
| 3 | 14.0 | 6.0 | |
| 4 | 25.5 | 4.7 | |
| 5 | 23 | 27.0 | 4.5 |
| 6 | 31.0 | 4.5 | |
| 7 | 35.5 | 3.7 | |
| 8 | 33 | 37.0 | 3.7 |
| 9 | 41.0 | 3.7 | |
| 10 | 47.5 | 3.0 | |
| 11 | 45 | 49.0 | 3.0 |
| 12 | 53.0 | 3.0 | |
| 13 | 60.5 | 2.8 | |
| 14 | 58 | 62.0 | 2.7 |
| 15 | 66.0 | 2.7 | |
| 16 | 70.5 | 2.2 | |
| 17 | 68 | 72.0 | 2.2 |
| 18 | 76.0 | 2.2 |
Adjustment time for Aerobat propeller — 2nd cycle_
| No. | Starting point - torque (Nm) | Ending point - torque (Nm) | Adjustment time (s) |
|---|---|---|---|
| 1 | 6.0 | 53.0 | 2.5 |
| 2 | 16.0 | 53.0 | 2.4 |
| 3 | 23.0 | 53.0 | 2.3 |
| 4 | 32.0 | 53.0 | 2.3 |
| 5 | 40.0 | 53.0 | 2.2 |
| 6 | 47.0 | 53.0 | 2.0 |