Have a personal or library account? Click to login
The Contribution of A. K. Oppenheim to Explaining the Nature of the Initiation of Gaseous Detonation in Tubes Cover

The Contribution of A. K. Oppenheim to Explaining the Nature of the Initiation of Gaseous Detonation in Tubes

Open Access
|Jun 2022

References

  1. [1] Schelkin, K.I. “effect of tube roughness on the occurrence and propagation of detonation in gases”. Zh. Eksp. Teor. Fiz. Vol. 10 No. 7 (1940): pp. 823–827.
  2. [2] P. Wolański and S. Wójcicki: “On the mechanism of influence of obstacles on the flame propagation”, Sixth International Colloquia on the Gasdynamics of Explosions and Reactive Systems pp. 69–74. Stockholm, Sweden (1977), also published in Archivum Combustionis, Vol. 1 No. 1/2, (1981).
  3. [3] Woliński M. and Wolański P. “Gaseous Detonation Processes in Presence of Inert Particles.” Archivum Combustionis, Vol. 7 No. 3/4 (1987): pp. 353–370.
  4. [4] Goral P., Klemens R., and Wolański P. “Mechanism of Gas Flame Acceleration in the Presence of Neutral Particles.” Progress in Astronautics and Aeronautics Vol. 113 (1987): pp. 325–335.10.2514/5.9781600865879.0325.0335
  5. [5] Wolański P., Liu J.C., Kauffman C.W., Nicholls J.A., and Sichel M. “The Effects of Inert Particles on Methane-Air Detonations.” Archivum Combustionis Vol. 8 No. 1 (1988): pp. 15–32.
  6. [6] Salamandra, G.D., Bazhenova, t.V., and Naboko I.M. “Formation of detonation wave during combustion of gas in combustion tube.” Symp. (Int.) Combust. 7: pp. 851–855. 1959.10.1016/S0082-0784(58)80128-9
  7. [7] Babkin, V. and Kozachenko L. “the onset of detonation in a gas in tubes with rough walls.” Prikl. Mat. Tekh. Fiz. Vol. 3 (1960): pp. 165–174.
  8. [8] Soloukhin, R.I. “Udarnye volny i detonatsya v gazakh.” Gosudarstvennoe Izdatelstvo fizikomatematicheskoi literatury, Moscow, translation: “Shock waves and Detonation in Gases.” Mono Book Corp. Baltimore, USA (1963).
  9. [9] Krivosheyev, P., Penyazkov, O., and Sakalou, A. “Analysis of the final stage of flame acceleration and the onset of detonation in a cylindrical tube using high-speed stereoscopic imaging.” Combustion and Flame Vol. 216 (2020): pp. 146–160.10.1016/j.combustflame.2020.02.027
  10. [10] Oppenheim, A.K., Urtiew, P.A. and Weinberg, F. J. “On the Use of Laser Sources in Schlieren-Interferometer Systems.” Proc. Roy. Soc. Vol. A291 (1966): pp. 279–290.10.1098/rspa.1966.0095
  11. [11] Oppenheim, A.K. “Development and structure of plane detonation waves.” 4th AGARD Combustion and Propulsion Colloquium: pp. 186–258. Milan, Italy, April 1960, Pergamon Press, London (1961) Oppenheim, A.K. and Lederman, A.J. Role of Detonation in Combustion Instability. University of California, Berkeley (1964).10.1016/S0010-2180(60)80046-6
  12. [12] Urtiew, P.A., and Oppenheim, A.K. “Experimental observations of the transition to detonation in an explosive gas.” Proc. Royal Soc. Lond. Vol. A295 (1966): pp. 13–28.10.1098/rspa.1966.0223
  13. [13] Oppenheim, A.K. Introduction to Gasdynamics of Explosions. Vol. VI (1970): Springer-Verlag, Vienna-New york 2nd edn. 220 pp.10.1007/978-3-7091-4364-3
  14. [14] Meyer, J. W., Urtiew, P. A., and Oppenheim, A. K. “On the Inadequacy of Gasdynamic Processes for Triggering the Transition to Detonation.” Combustion and Flame Vol. 14 No. 1 (February 1970).10.1016/S0010-2180(70)80005-0
  15. [15] Wolański P. “Influence of non-isentropic processes on transition from deflagration to detonation in combustible mixtures.” Archivum Combustionis Vol. 11 No. 3-4 (1991): pp. 143–149.
  16. [16] Kuhl, A.L. private communication, Jadwisin (1986).
  17. [17] Frolov S.M., Noskov M.A., and Wolański P. “Auto-Ignition in Near-Wall Boundary Layer as a Cause of Deflagration to Detonation Transition.” Archivum Combustionis Vol. 14 No. 1-2 (1994): pp. 65–72.
  18. [18] Noskov M.A., Frolov S.M., and Wolański P. “The Effect of Non-Isentropic Processes on Deflagration to Detonation Transition in Gaseous Combustible Mixtures.” Proceedings of the ZEL’DOVICH MEMORIAL, International Conference on Combustion Vol. 2: pp. 370–376. Moscow, Russia, September 12-17, 1994.
  19. [19] Dziemińska, E., Fukuda, M., Hayashi, A.K., and Yamada, E. “Fast flame propagation in hydrogen-oxygen mixture.” Combustion Science and Technology Vol. 184 No. 10-11 (2012): pp. 1608-1615. DOI: 10.1080/00102202.2012.695252
  20. [20] Machida, T., Asahara, M., Hayashi, A.K., and Tsuboi, N. “Three-Dimensional Simulation of Deflagrationto-Detonation Transition with a Detailed Chemical Reaction Model.” Combustion Science and Technology Vol. 186 No. 10-11 (2014): pp. 1758–1773, DOI: 10.1080/00102202.2014.935647
  21. [21] Baranyshyn, Y. A., Krivosheyev, P. N., Penyazkov, O. G. and Sevrouk, K. L. “Flame front dynamics studies at deflagration-to-detonation transition in a cylindrical tube at low-energy initiation mode.” Shock Waves Vol. 30 (2020): pp. 305–313. DOI: 10.1007/s00193-020-00937-0
  22. [22] Krivosheyev, P., Novitski, A., and Penyazkov, O. “Dynamics of the flame structure during the deflagration to detonation transition in a tube.” Dynamics of Multiphase Media Vol. DMM-21 (2021). Novosibirsk, Russia
Language: English
Page range: 1 - 12
Submitted on: Nov 22, 2021
Accepted on: Apr 4, 2022
Published on: Jun 23, 2022
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Allen L. Kuhl, Antoni Koichi Hayashi, Piotr Wolański, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.