Have a personal or library account? Click to login
Prospects for the Implementation of New Materials and Technologies in the Aerospace Industry Cover

Prospects for the Implementation of New Materials and Technologies in the Aerospace Industry

By: Taras Yanko and  Olexii Dmytrenko  
Open Access
|Dec 2021

References

  1. [1] Kandasamy Jayakrishna, Vishesh R. Kar, Mohamed T.H. Sultan & Murugan Rajesh, 2018, 1 – Materials selection for aerospace components, Ed.: Mohammad Jawaid, Mohamed Thariq, In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Aerospace Applications, Woodhead Publishing, Pages 1-18, DOI: 10.1016/B978-0-08-102131-6.00001-3.10.1016/B978-0-08-102131-6.00001-3
  2. [2] Huda, Z. & Edi, P., 2013, “Materials selection in design of structures and engines of supersonic aircrafts: A review”. Materials & Design, 46, pp. 552–560. DOI: 10.1016/j.matdes.2012.10.001.10.1016/j.matdes.2012.10.001
  3. [3] Mitsuhiro, T. & Masashi, K., 2014, “Making lighter aircraft engines with titanium aluminide blades”. IHI Engineering Review, 47(1), pp. 10–13.
  4. [4] Mouritz, A.P., 2012, Introduction to aerospace materials, 1st ed., Woodhead Publishing, Suite, Philadelphia, USA.10.2514/4.869198
  5. [5] Alderliesten R., 2018, Introduction to Aerospace Structures and Materials. Netherlands; pp. 41–58. DOI: 10.5074/t.2018.003.10.5074/T.2018.003
  6. [6] Rolls-Royce. http://www.rolls-royce.com/about/technology/gas_turbinetech/. Accessed on 19-12-2012.
  7. [7] AMG. http://www.amg-nv.com/Innovation/Titanium-Aluminide/default.aspx. Accessed on 18-01-2013.
  8. [8] Schafrik, R. & Sprague, R., 2004, “Siga of gas turbine materials: Part I; Modern aeropropulsion is possible only because of the engine materials that have enabled continuous improvement in high-temperature operation, higher power, and reduced weight over the past 50 years. This is the first of a four-part series about development of gas turbine engine materials”. Advanced Materials & Processes, 162(3), pp. 33–36.
  9. [9] ‘P1100G – MTU AeroEngines’, available at http://www.mtu.de/engines/civil-aircraft-engines/narrowbody-and-regional-jets/pw1000g/, Accessed on 18-11-2015.
  10. [10] Clemens, H., Smarsly, W., Gütherand, V. and Mayer, S., 2015, “Advanced intermetallic titanium aluminides”, Proceedings of the 13th World Titanium Conference, San Diego, USA.10.1002/9781119296126.ch203
  11. [11] Clemens, H. & Mayer, S., 2016, “Intermetallic titanium aluminides in aerospace applications – processing, microstructure and properties”. Materials at High Temperatures, 33(4-5), pp. 560–570, DOI: 10.1080/09603409.2016.1163792.10.1080/09603409.2016.1163792
  12. [12] Dada, M., Popoola, P., Adeosun, S., & Mathe, N. R., 2019, “High entropy alloys for aerospace applications”. IntechOpen. DOI: 10.5772/intechopen.84982.10.5772/intechopen.84982
  13. [13] Castellanos, S. D., et al., 2019, “Machinability of titanium aluminides: A review”. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(3), pp. 426–451. DOI: 10.1177/1464420718809386.10.1177/1464420718809386
  14. [14] Hood, R., 2010, “The machinability of a gamma titanium aluminide intermetallic”. Doctoral dissertation, University of Birmingham.
  15. [15] Yanko T.B. & Datsenko R.B., 2018, “Method of dynamic high-speed casting of metal microspheres”, Pat. UA 129499.
  16. [16] Yanko T.B. & Datsenko R.B., 2019, “Device for continuous casting of metal wires of small diameters from the active metals”. Pat. UA 134397.
  17. [17] 2009, “High-temperature resistant aero engine coatings”, Aircraft Engineering and Aerospace Technology, 81(6). DOI: 10.1108/aeat.2009.12781fad.001.10.1108/aeat.2009.12781fad.001
  18. [18] Hetmańczyk, M., Swadźba, L. and Mendala, B., 2007, “Advanced materials and protective coatings in aero-engines application”. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), pp. 372–381.
  19. [19] Alqallaf, J., Ali, N., Teixeira, & Addali, A., 2020, “Solid Particle Erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades-A Review”. Processes, 8(8), pp. 984. DOI: 10.3390/pr8080984.10.3390/pr8080984
  20. [20] Beardsley, M. Brad, 2008, “Potential use of quasicrystalline materials as thermal barrier coatings for diesel engine components”. Retrospective Theses and Dissertations. 15661. DOI: 10.31274/rtd-180813-16873.10.31274/rtd-180813-16873
  21. [21] Sánchez, A., Garcia de Blas, F.J., Algaba, J.M. et al., 1998, Application of Quasicrystalline Materials As Thermal Barriers in Aeronautics and Future Perspectives of Use For These Materials. MRS Online Proceedings Library, 553, pp. 447–458. DOI: 10.1557/PROC-553-447.10.1557/PROC-553-447
  22. [22] Kaiser, A. Shklover, V., SteurerIvan, W. & Vjunitsky, I., 2003, “Quasikristalline Legierungen und deren Verwendung als Beschichtung”. Pat. DE10358813A1.
  23. [23] Clossen-von Lanken Schulz, Michael Kadau, Kai, 2012, “Turbine blade and method for producing a turbine blade with high surface hardness”. Pat. DE102012219856A1.
  24. [24] Milman, Yu.V., Efymov, N.A., Goncharova, IV, 2012, “Quasicrystals – a new class of solids with unique physical properties” (in Russian). Electron microscopy and strength of materials: Sat. scientific tr. Kyiv: IPM NAS of Ukraine, 18, pp. 3–15. http://dspace.nbuv.gov.ua/handle/123456789/63528.
  25. [25] Airbus reveals new zero-emission concept aircraft. https://www.airbus.com/newsroom/press-releases/en/2020/09/airbus-reveals-new-zeroemission-concept-aircraft.html. Accessed on 21-09-2020.
  26. [26] “Fuel cell aircraft HY4 makes maiden flight”. https://www.theengineer.co.uk/fuel-cell-aircraft-hy4-makes-maiden-flight. The Engineer. 2016-09-30. Retrieved 2016-10-19.
  27. [27] Dmytrenko, O.E., Dubinko, V.I., Borysenko, V. & Irwin. K., 2020, “Synthesis of hydrogen storage materials in a Ti-Zr-Ni system using the hydride cycle technology during dehydrogenation by an electron beam in a vacuum”. Problems of atomic science and technique (PAST), 1(125), pp. 198–205.10.46813/2020-125-198
  28. [28] Paserin, V., Marcuson, S., Shu, J. & Wilkinson, D.S., 2003, “The Chemical Vapor Deposition Technique for Inco Nickel Foam Production—Manufacturing Benefits and Potential Applications”. Cellular Metals and Metal Foaming Technology, Banhart, J., Fleck, N.A., Eds. MIT-Verlag: Berlin, Germany; pp. 31–38.
  29. [29] Farafonov, D.P., Migunov, V.P., Saraev, A.A. & Leschev, N.E., 2018, “Abradability and erosion resistance of seals in turbine engine air-gas channel” (in Russian). Proceedings of VIAM, 8(68). DOI: 10.18577/2307-6046-2018-0-8-70-80.10.18577/2307-6046-2018-0-8-70-80
  30. [30] Paun, F., Gasser, S. & Leylekian, L., 2003, “Design of materials for noise reduction in aircraft engines”. Aerospace Science and Technology, 7(1), pp. 63–72.10.1016/S1270-9638(02)00006-8
  31. [31] Scarponi, C., 2016, “Carbon-carbon composites in aerospace engineering”. Advanced Composite Materials for Aerospace Engineering. Processing, Properties and Applications, 2016, pp. 385–412. DOI: 10.1016/B978-0-08-100037-3.00013-4.10.1016/B978-0-08-100037-3.00013-4
  32. [32] Soutis, C., 2005, “Carbon fiber reinforced plastics in aircraft construction”. Materials Science and Engineering: A, 412(1-2), pp. 171–176. DOI: 10.1016/j.msea.2005.08.064.10.1016/j.msea.2005.08.064
  33. [33] Carbon Fiber in Aerospace Applications. https://www.pcmi-mfg.com/blog/carbon-fiber-in-aerospace-applications. Accessed on 19-12-2020.
  34. [34] Savage, G., 1993, Carbon-carbon Composites, Springer Science&Business Media, DOI: 10.1007/978-94-011-1586-5.10.1007/978-94-011-1586-5
  35. [35] GE Redesigns Carbon Composite Blades for GE9X Engine. https://www.designnews.com/ge-redesigns-carbon-composite-blades-ge9x-engine. Accessed on 09-01-2021.
Language: English
Page range: 1 - 10
Published on: Dec 27, 2021
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Taras Yanko, Olexii Dmytrenko, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.