Have a personal or library account? Click to login
Design and Analysis Methods for Composite Bonded Joints Cover

Design and Analysis Methods for Composite Bonded Joints

Open Access
|Mar 2021

References

  1. [1] Baker, A. A., and Scott, M. L., eds., 2016, Composite Materials for Aircraft Structures, AIAA/American Institute of Aeronautics and Astronautics, Inc, Reston, Virginia.
  2. [2] Heslehurst, R. B., 2013, Design and Analysis of Structural Joints with Composite Materials, DEStech Publ, Lancaster, Pa.
  3. [3] Kim, H., and Kedward, K., 2001, Stress Analysis Of In-Plane, Shear-Loaded, Adhesively Bonded Composite Joints And Assemblies, DOT/FAA/AR-01/7, FAA.
  4. [4] Baron, A., 2012, The I-23 “Manager” passenger plane. Selected research problems (in Polish). Scientific Publication of the Institute of Aviation, Warsaw.
  5. [5] Speth, D. R., yang, y. P., and Ritter, G. W., 2010, “Qualification of Adhesives for Marine Composite-to-Steel Applications,” Int. J. Adhes. Adhes., 30(2), pp. 55-62. 10.1016/j.ijadhadh.2009.08.004.10.1016/j.ijadhadh.2009.08.004
  6. [6] Wahab, M. A., 2014, The Mechanics of Adhesives in Composite and Metal Joints: Finite Element Analysis with ANSYS, DEStech Publications, Lancaster, PA.
  7. [7] Pegoretti, A., ed., 2019, Adhesive Joining of Structural Components: New Insights and Technologies, SAE International, Warrendale, Pennsylvania, USA.10.4271/pt-191
  8. [8] Banea, M. D., and da Silva, L. F. M., 2009, “Adhesively Bonded Joints in Composite Materials: An Overview,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., 223(1), pp. 1-18. 10.1243/14644207JMDA219.10.1243/14644207JMDA219
  9. [9] Da Silva, L. F. M., 2018, Handbook of Adhesion Technology, Springer Science+Business Media, LLC, New york, Ny.
  10. [10] Gleich, D. M., 2002, Stress Analysis of Structural Bonded Joints, DUP Science, Delft.
  11. [11] Zhu, y., and Kedward, K., 2005, Methods of Analysis and Failure Predictions for Adhesively Bonded Joints of Uniform and Variable Bondline Thickness, DOT/FAA/AR 05-12, FAA.
  12. [12] da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., and Spelt, J. K., 2009, “Analytical Models of Adhesively Bonded Joints—Part I: Literature Survey,” Int. J. Adhes. Adhes., 29(3), pp. 319-330. 10.1016/j.ijadhadh.2008.06.005.10.1016/j.ijadhadh.2008.06.005
  13. [13] He, X., 2011, “A Review of Finite Element Analysis of Adhesively Bonded Joints,” Int. J. Adhes. Adhes.10.1016/j.ijadhadh.2011.01.006
  14. [14] 2011, A Space Engineering Adhesive Boding Handbook, ECSS-E-HB-32-21, ESA Requirements and Standards Division, Netherlands.
  15. [15] Esp, B., 2017, Practical Analysis of Aircraft Composites, Grand Oak Publishing.
  16. [16] Flinn, B., and Phariss, M., 2006, The Effect of Peel-Ply Surface Preparation Variables on Bond Quality, DOT/FAA/AR-06/28, FAA.
  17. [17] Potter, D. L., 1979, Primary Adhesively Bonded Structure Technology (PABST): Design Handbook for Adhesive Bonding, AFFDL-TR-79-3129, Air Force Flight Development Laboratory, Long Beach.
  18. [18] Hart-Smith, L. J., 1973, Adhesive Bonded Single Lap Joints, NASA-CR-112236, NASA, USA.
  19. [19] Hart-Smith, L. J., 1973, Adhesive Bonded Double-Lap Joints, NASA-CR-112235, NASA, USA.
  20. [20] Tomblin, J., Strole, K., Dodosh, G., and Ilcewicz, L., 2005, Assessment of Industry Practices for Aircraft Bonded Joints and Structures, DOT/FAA/AR-05/13, FAA.
  21. [21] Tomblin, J., Seneviratne, W., Escobar, P., and Yoon-Khian, y., 2002, Shear Stress-Strain Data for Structural Adhesives, DOT/FAA/AR-02/97, FAA.
  22. [22] 2012, “CMH-17-1G (Volume 1 of 6) Composite Materials Handbook: Polymer Matrix Composites Guidelines for Characterization of Structural Materials.”
  23. [23] Tong, L., and Luo, Q., 2018, “Analytical Approach,” Handbook of Adhesion Technology, L.F.M. da Silva, A. Öchsner, and R.D. Adams, eds., Springer International Publishing, Cham, pp. 665-700.10.1007/978-3-319-55411-2_24
  24. [24] Volkersen, O., 1938, “Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen Mit Konstanten Laschenquerschnitten,” Luftfahrtforschung, 15, pp. 41-47.
  25. [25] Tsai, M. y., Oplinger, D. W., and Morton, J., 1998, “Improved Theoretical Solutions for Adhesive Lap Joints,” Int. J. Solids Struct., 35(12), pp. 1163-1185.10.1016/S0020-7683(97)00097-8
  26. [26] Saleh, M. N., Saeedifar, M., Zarouchas, D., and De Freitas, S. T., 2020, “Stress Analysis of Double-Lap Bi-Material Joints Bonded with Thick Adhesive,” Int. J. Adhes. Adhes, 97, p. 102480. 10.1016/j.ijadhadh.2019.102480.10.1016/j.ijadhadh.2019.102480
  27. [27] Goland, M., and Reissner, E., 1944, “Stresses in Cemented Joints,” J. Appl. Mech., 11, pp. 4-47.10.1115/1.4009336
  28. [28] Wang, J., 2013, “Mechanics and Fracture of Hybrid Material Interface Bond,” PhD, The University of Akron.
  29. [29] Zhao, B., Lu, Z.-H., and Lu, y.-N., 2011, “Closed-Form Solutions for Elastic Stress–Strain Analysis in Unbalanced Adhesive Single-Lap Joints Considering Adherend Deformations and Bond Thickness,” Int. J. Adhes. Adhes., 31(6), pp. 434-445. 10.1016/j.ijadhadh.2011.03.002.10.1016/j.ijadhadh.2011.03.002
  30. [30] da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., Wang, A., and Spelt, J. K., 2009, “Analytical Models of Adhesively Bonded Joints—Part II: Comparative Study,” Int. J. Adhes. Adhes., 29(3), pp. 331-341. 10.1016/j.ijadhadh.2008.06.007.10.1016/j.ijadhadh.2008.06.007
  31. [31] Areiza-Hurtado, M., Vega-Posada, C. A., and Aristizabal-Ochoa, J. D., 2019, “A Novel Linear Matrix Method to Analyze Adhesive Joints,” Compos. Struct., 226, p. 111193. 10.1016/j.compstruct.2019.111193.10.1016/j.compstruct.2019.111193
  32. [32] Wang, S., Xie, Z., and Li, X., 2019, “A Modified Analytical Model for Stress Analysis of Adhesively Bonded Stepped-Lap Joints under Tensile Load,” Eur. J. Mech. A/Solids, 77, p. 103794. 10.1016/j.euromechsol.2019.103794.10.1016/j.euromechsol.2019.103794
  33. [33] Society of Automotive Engineers, and National Institute for Aviation Research (U.S.), eds., 2012, Composite Materials Handbook Volume 3, SAE International on behalf of CMH-17, a division of Wichita State University, Warrendale, Pa.
  34. [34] García, J. A., Chiminelli, A., García, B., Lizaranzu, M., and Jiménez, M. A., 2011, “Characterization and Material Model Definition of Toughened Adhesives for Finite Element Analysis,” Int. J. Adhes. Adhes., 31(4), pp. 182-192. 10.1016/j.ijadhadh.2010.12.006.10.1016/j.ijadhadh.2010.12.006
  35. [35] Wang, C. H., and Chalkley, P., 2000, “Plastic yielding of a Film Adhesive under Multiaxial Stresses,” Int. J. Adhes. Adhes., 20(2), pp. 155-164. 10.1016/S0143-7496(99)00033-0.10.1016/S0143-7496(99)00033-0
  36. [36] Rodríguez, R. Quispe, Paiva, W. P. de, Sollero, P., Rodrigues, M. R. Bertoni, and Albuquerque, É. L. de, 2012, “Failure Criteria for Adhesively Bonded Joints,” Int. J. Adhes. Adhes., 37, pp. 26-36. 10.1016/j.ijadhadh.2012.01.009.10.1016/j.ijadhadh.2012.01.009
  37. [37] Campilho, R. D. S. G., ed., 2017, Strength Prediction of Adhesively-Bonded Joints, CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business, Boca Raton.
  38. [38] Whitney, J. M., and Nuismer, R. J., 1974, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8(3), pp. 253-265. 10.1177/002199837400800303.10.1177/002199837400800303
  39. [39] Sajikumar, K. S., Kumar, N. A., and Rao, B. N., 2014, “Application of the Point Stress Criterion to Assess the Bond Strength of a Single-Lap Joint,” Strength Mater., 46(4), pp. 518-525. 10.1007/s11223-014-9577-z.10.1007/s11223-014-9577-z
  40. [40] Akhavan-Safar, A., Silva, L. F. M. da, and Ayatollahi, M. R., 2017, “An Investigation on the Strength of Single Lap Adhesive Joints with a Wide Range of Materials and Dimensions Using a Critical Distance Approach,” Int. J. Adhes. Adhes., 78, pp. 248-255. 10.1016/j.ijadhadh.2017.08.009.10.1016/j.ijadhadh.2017.08.009
  41. [41] Cruz-G, C. E., Akhavan-Safar, A., da Silva, L. F. M., and Ayatollahi, M. R., 2020, “On the Evaluation of a Critical Distance Approach for Failure Load Prediction of Adhesively Bonded Dissimilar Materials,” Continuum Mech. Thermodyn. 32, 1647–1657. 10.1007/s00161-020-00871-7.10.1007/s00161-020-00871-7
  42. [42] Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Advances in Applied Mechanics, H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, and L. Howarth, eds., Elsevier, pp. 55-129.10.1016/S0065-2156(08)70121-2
  43. [43] Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8(2), pp. 100-104. 10.1016/0022-5096(60)90013-2.10.1016/0022-5096(60)90013-2
  44. [44] Camanho, P. P., and Davila, C. G., 2002, Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials, NASA/TM-2002-211737, NASA Langley Research Center; Hampton, VA, United States.
  45. [45] “Abaqus Analysis User’s Manual – Dokumentacja Programu Abaqus 6.12.”
  46. [46] 2016, “MSC Nastran 2016, Nonlinear User’s Guide, SOL400.”
  47. [47] da Silva, L. F. M., and Campilho, R. D. S. G., 2012, “Advances in Numerical Modelling of Adhesive Joints,” Advances in Numerical Modeling of Adhesive Joints, L.F.M. da Silva, and R.D.S.G. Campilho, eds., Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-93.10.1007/978-3-642-23608-2_1
  48. [48] Carvalho, U. T. F., and Campilho, R. D. S. G., 2017, “Validation of Pure Tensile and Shear Cohesive Laws Obtained by the Direct Method with Single-Lap Joints,” Int. J. Adhes. Adhes., 77, pp. 41-50. 10.1016/j.ijadhadh.2017.04.002.10.1016/j.ijadhadh.2017.04.002
  49. [49] Sun, L., Tie, y., Hou, y., Lu, X., and Li, C., 2020, “Prediction of Failure Behavior of Adhesively Bonded CFRP Scarf Joints Using a Cohesive Zone Model,” Eng. Fract. Mech., 228, p. 106897. 10.1016/j.engfracmech.2020.106897.10.1016/j.engfracmech.2020.106897
  50. [50] Zhang, J., Wang, J., yuan, Z., and Jia, H., 2018, “Effect of the Cohesive Law Shape on the Modelling of Adhesive Joints Bonded with Brittle and Ductile Adhesives,” Int. J. Adhes. Adhes., 85, pp. 37-43. 10.1016/j.ijadhadh.2018.05.017.10.1016/j.ijadhadh.2018.05.017
  51. [51] Silva, D. F. O., Campilho, R. D. S. G., Silva, F. J. G., and Carvalho, U. T. F., 2018, “Application a Direct/Cohesive Zone Method for the Evaluation of Scarf Adhesive Joints,” Appl. Adhes. Sci., 6(1), p. 13. 10.1186/s40563-018-0115-2.10.1186/s40563-018-0115-2
  52. [52] 2009, “ISO 25217:2009, Adhesives — Determination of the Mode 1 Adhesive Fracture Energy of Structural Adhesive Joints Using Double Cantilever Beam and Tapered Double Cantilever Beam Specimens.”
  53. [53] D30 Committee, ASTM D5041-98(2019), Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International.
  54. [54] D30 Committee, ASTM D6671 / D6671M-19, Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM International.
  55. [55] Sørensen, B. F., and Jacobsen, T. K., 2003, “Determination of Cohesive Laws by the J Integral Approach,” Cohesive Models, 70(14), pp. 1841-1858. 10.1016/S0013-7944(03)00127-9.10.1016/S0013-7944(03)00127-9
  56. [56] Davis, M., and Tomblin, J., 2007, “DOT/FAA/AR-TN06/57, Best Practice in Adhesive-Bonded Structures and Repairs.”
Language: English
Page range: 45 - 63
Published on: Mar 26, 2021
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Przemysław Dobrzański, Witold Oleksiak, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.