Have a personal or library account? Click to login
Review on the Rotating Detonation Engine and It’s Typical Problems Cover

Review on the Rotating Detonation Engine and It’s Typical Problems

Open Access
|Dec 2020

References

  1. [1] Abel, F.A., 1869, XIV. Contributions to the history of explosive agents. Philos. Trans. R. Soc. london, 159, pp. 489-516.10.1098/rstl.1869.0017
  2. [2] Berthelot, M. and Vieille, P., 1883, L’onde explosive, Ann. Chim. Phys. Ser 5, 28, pp. 289-332.
  3. [3] Chapman, D. l., 1899, VI. On the rate of explosion in gases. The London, Edinburgh, and Dublin Philosophical Magazine and journal of Science, 47(284), pp. 90-104.10.1080/14786449908621243
  4. [4] Jouguet, E., 1913, Sur l’onde explosive. CR Acad. Sci., Paris, 156, pp. 872-875.
  5. [5] Zeldovich, Y. B., 1940, Zh. Exp. Teor. Fiz. 10(5), pp. 542-568. English translation, NACA TN No. 1261 (1950).
  6. [6] von Neumann, J., 1942, Theory of detonation waves, OSRD Rep.
  7. [7] Doring, W., 1943, Detonation waves. Ann. Phys. 5e Folge, 43, pp. 421-436.10.1002/andp.19434350605
  8. [8] Campbell, C. and Woodhead, D.W., 1926, CCCCI.—The ignition of gases by an explosion-wave. Part I. Carbon monoxide and hydrogen mixtures. J. Chem. Soc. (Resumed), 129, pp. 3010-3021. 10.1039/JR9262903010.10.1039/JR9262903010
  9. [9] Vasil’ev, A.A., 2006, “Cell Size as the Main geometric Parameter of Multifront Detonation Wave,” J. Propul. Power, 22(6), pp.1245-1260.10.2514/1.20348
  10. [10] Lee, J.H.S. and Radulescu, M.I., 2005, On the hydrodynamic thickness of cell detonations. Combust Explos Shock Waves, 41(6), pp. 745-765. 10.1007/s10573-005-0084-1.10.1007/s10573-005-0084-1
  11. [11] Vasil’ev, A.A., 1982, Geometric limits of gas detonation propagation, Combust Explos Shock Waves, 18(2), pp. 245-249. 10.1007/BF00789626.10.1007/BF00789626
  12. [12] Vasil’ev A.A., Mitrofanov, V.V. and Topchiyan, M.E., 1987, Detonation waves in gases. Combust Explos Shock Waves, 23(5), pp. 605-623. 10.1007/BF00756541.10.1007/BF00756541
  13. [13] Kindracki, j., Kobiera, A., Wolanski, P., Gut, Z., Folusiak, M. and Swiderski, K., 2011, Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures, EUCASS Proceedings Series, 2, pp. 555-582. 10.1051/eucass/201102555.10.1051/eucass/201102555
  14. [14] George, A.S., Driscoll, R., Anand, V., et al., 2017, On the existence and multiplicity of rotating detonations. Proc. Combust. Inst, 36(2), pp. 2691-2698. 10.1016/j.proci.2016.06.132.10.1016/j.proci.2016.06.132
  15. [15] Wen, H., Xie, Q. and Wang, B., 2019, Propagation behaviors of rotating detonation in an obround combustor. Combust. Flame, 210, pp. 389-398. 0.1016/j.combustflame.2019.09.008.10.1016/j.combustflame.2019.09.008
  16. [16] Lee, B.H.K., Lee, J.H., Knystautas, R., 1966, Transmission of detonation waves through orifices. AIAA j, 4(2), pp. 365-367.10.2514/3.3442
  17. [17] Ciccarelli, G. and Dorofeev, S., 2008, Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci, 34(4), pp. 499-550. 10.1016/j.pecs.2007.11.002.10.1016/j.pecs.2007.11.002
  18. [18] Lee, J.H.S., 2008, The detonation phenomenon. Cambridge, from http://mx.itam.nsc.ru/users/libr/elib/4/2008/lee-DetonPhenomenon.pdf.10.1017/CBO9780511754708
  19. [19] Shchelkin, K.I., 1940, Influence of tube roughness on the formation and detonation propagation in gas. j. Exp. Theor. Phys., 10, pp. 823-827.
  20. [20] Urtiew, P.A. and Oppenheim, A.k., 1966, Experimental observation of the transition to detonation in an explosive gas. Proc. R. Soc. london. Series A. Mathematical and Physical Sciences, 295(1440), pp. 13-28.10.1098/rspa.1966.0223
  21. [21] Lee, J.H., Knystautas, R. and Yoshikawa, N., 1980, Photochemical initiation of gaseous detonations//gas dynamics of Explosions and Reactive Systems. Pergamon, pp. 971-982.10.1016/B978-0-08-025442-5.50006-8
  22. [22] Zhang, H., Liu, W. and Liu, S., 2016, Effects of inner cylinder length on H2/air rotating detonation. Int. J. Hydrogen Energy, 41(30), pp. 13281-13293. 10.1016/j.ijhydene.2016.06.083.10.1016/j.ijhydene.2016.06.083
  23. [23] Fotia, M.L., Hoke, J. and Schauer, F., 2018, Study of the ignition process in a laboratory scale rotating detonation engine. Exp. Therm. Fluid Sci, 94, pp. 345-354. 10.1016/j.expthermflusci.2017.11.002.10.1016/j.expthermflusci.2017.11.002
  24. [24] Dunlap, R., 1958, A preliminary study of the application of steady-state detonative combustion to a reaction engine. Jof Jet Pro, 28(7), pp. 451-456.10.2514/8.7347
  25. [25] Gross, R.A., 1963, Oblique detonation waves. AIAA J, 1(5), pp. 1225-1227.10.2514/3.1777
  26. [26] Ostrander, M., Hyde, J., Young, M., et al.,1987, “Standing oblique detonation wave engine performance.” 23rd Joint Propulsion Conference. 1987-2002. 10.2514/6.1987-2002.10.2514/6.1987-2002
  27. [27] Ren, Z., Wang, B., Xiang, G., et al., 2018, Effect of the multiphase composition in a premixed fuel-air stream on wedge-induced oblique detonation stabilization. J. Fluid Mech, 846, pp. 411-427. 10.1017/jfm.2018.289.10.1017/jfm.2018.289
  28. [28] Ren, Z., Wang, B., Xiang, G., et al., 2019, Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures. Proc. Combust. Inst, 37(3), pp. 3627-3635. 10.1016/j.proci.2018.08.038.10.1016/j.proci.2018.08.038
  29. [29] Ashford, S.A. and Emanuel, G., 1996, Oblique detonation wave engine performance prediction. j. Propul. Power, 12(2), pp. 322-327. 10.2514/3.24031.10.2514/3.24031
  30. [30] Pratt, D.T., Humphrey, J.W. and Glenn, D.E., 1991, Morphology of standing oblique detonation waves. j. Propul. Power, 7(5), pp. 837-845. 10.2514/3.23399.10.2514/3.23399
  31. [31] Miao, S., Zhou, J., Lin, Z., et al., 2018, Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves. AIAA J, 56(8), pp. 3112-3122. 10.2514/1.j05688710.2514/1.J056887
  32. [32] Valorani, M., Giacinto, M. and Buongiorno, C., 2001, Performance prediction for oblique detonation wave engines (ODWE). Acta Astronaut, 48(4), pp. 211-228. 10.1016/S0094-5765(00)00161-210.1016/S0094-5765(00)00161-2
  33. [33] Sislian, J.P., Schirmer, H., Dudebout, R., et al., 2001, Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. j. Propul. Power, 17(3), pp. 599-604. 10.2514/2.5783.10.2514/2.5783
  34. [34] Hoffmann, N., 1940, Reaction Propulsion by Intermittent Detonative Combustion. Ministry of Supply, Volkenrode Ranslation.
  35. [35] Kailasanath, K., 2000, Review of propulsion application of detonation waves, AIAA J., 38(9), pp. 1698-1708. 10.2514/2.1156.10.2514/2.1156
  36. [36] Kailasanath, K., 2003, Recent developments in the research on pulse detonation engines, AIAA J., 41(2), pp. 145-159. 10.2514/6.2002-470.10.2514/2.1933
  37. [37] Kindracki, J. Experimental research and numerical calculation of the rotating detonation, Ph. D. thesis (in Polish).
  38. [38] Shunsuke, T., Morozumi, T., Matsuoka, K., Kasahara, J., et. al., 2014, Study on pulse detonation rocket engine using flight test demonstrator “Todoroki II”, AIAA 2014-4033. 10.2514/6.2014-4033.
  39. [39] Kailasanath, K., 2009, Research on pulse detonation combustion system-a status report, AIAA 2009-631. 10.2514/6.2009-631.10.2514/6.2009-631
  40. [40] Bussing, T. and Pappas, G., 1994, Introduction to pulse detonation engines, AIAA Paper 94-0263.10.2514/6.1994-263
  41. [41] Wintenberger, E. and Shepherd, J. E., 2006, Thermodynamic cycle analysis for propagating detonations, J. Propul. Power, 22(3), pp. 694-698. 10.2514/1.12775.10.2514/1.12775
  42. [42] Anderson, S.D., Tonouchi, J.H., Lidstone, G.L., et al., 2004, Performance trends for a product scale pulse detonation engine, AIAA 2004-3402. 10.2514/6.2004-3402.10.2514/6.2004-3402
  43. [43] Lu, J., Zheng, L., Qiu, H., et al., 2016, Performance investigation of a pulse detonation turbine engine, Proc. IME G J. Aero. Eng., 230(2), pp. 350-359. 10.1177/0954410015591834.
  44. [44] Yan, C. and Fan, W., 2005, “Theory and key technology of pulse detonation engine.” Northwestern Polytechnical University Press. Xi`an, China.
  45. [45] Hinkey, J.B., Williams, J.T., Henderson, S.E., et al., 1997, Rotary-valved, multiple-cycle, pulse detonation engine experimental demonstration, AIAA 1997-2746. 10.2514/6.1997-2746.10.2514/6.1997-2746
  46. [46] Gustavsson, J., Nori, V. and Segal, C., 2003, Inlet/engine interactions in an axisymmetric pulse detonation engine system, j. Propul. Power, 19(2), pp. 282-286. 10.2514/2.6109.10.2514/2.6109
  47. [47] Rasheed, A., Glaser, A., Dunton, R.A., et al., 2008, Experimental and numerical investigation of a valved multi-tube PDE, AIAA 2008-110. 10.2514/6.2008-110.10.2514/6.2008-110
  48. [48] Matsuoka, K, Esumi, M., Kasahara, J., et al., 2010, Study on valve systems for pulse detonation engines, AIAA 2010-6672. 10.2514/6.2010-6672.10.2514/6.2010-6672
  49. [49] Shimo, M. and Heister, S.D., 2008, Multicyclic-detonation-initiation studies in valveless pulsed detonation combustors, J. Propul. Power, 24(2), pp. 336-344. 10.2514/1.29546.10.2514/1.29546
  50. [50] Peng, C., Fan, W., Zheng, L., et al., 2012, Experimental investigation on valves air-breathing dual-tube pulse detonation engines, Appl. Therm. Eng., 51(1-2), pp. 1116-1123. 10.1016/j.applthermaleng.2012.10.026.10.1016/j.applthermaleng.2012.10.026
  51. [51] Lu, J., Zheng, L., Wang, Z., et al., 2015, Operating characteristics and propagation of back-pressure waves in a multi-tube two-phase valveless air-breathing pulse detonation combustor, Exp. Therm. Fluid Sci., 61, pp. 12-23. 10.1016/j.expthermflusci.2014.10.010.10.1016/j.expthermflusci.2014.10.010
  52. [52] Lu, J., “Investigations on key technologies of the pulse detonation turbine engine.” Northwestern Polytechnical University.
  53. [53] Rasheed, A., Tangirala, V.E., Vandervort, C.L., et al., 2004, Interactions of a pulsed detonation engine with a 2D blade cascade, AIAA 2004-1207. 10.2514/6.2004-1207.10.2514/6.2004-1207
  54. [54] Carlos, X., Olivier, P., Tomas, G., et al., 2018, The efficiency of a pulsed detonation combustor-axial turbine integration, Aero. Sci. Technol., 82-83, pp. 80-91. 10.1016/j.ast.2018.08.038.10.1016/j.ast.2018.08.038
  55. [55] Glaser, A., Caldwell, N. and Gutmark, E., 2007, Performance of an axial flow turbine driven by multiple pulse detonation combustors, AIAA Paper 2007-1244. 10.2514/6.2007-1244.10.2514/6.2007-1244
  56. [56] Fernelius, M., Gorrell, S., Hoke, J., et al., 2013, Effect of periodic pressure pulses on axial turbine performance, AIAA Paper 2013-3687. 10.2514/6.2013-3687.10.2514/6.2013-3687
  57. [57] George, St A., Driscoll, R., Gutmark, E., et al., 2014, Experimental comparison of axial turbine performance under steady and pulsating flows, ASME j. Turbomach., 136(11), pp. 111005.10.1115/1.4028115.10.1115/1.4028115
  58. [58] Roux, J.A., 2015, Parametric cycle analysis of an ideal pulse detonation engine, J. Thermophys. Heat Transf., 29(4), pp. 671-677. 10.2514/1.T4515.10.2514/1.T4515
  59. [59] Hutchins, T.E. and Metghalchi, M., 2003, Energy and exergy analysis of the pulse detonation engine, ASME J. Eng. Gas Turbines Power, 125(4), pp. 1075-1080. 10.1115/1.1610015.10.1115/1.1610015
  60. [60] Endo, T., Kasahara, J., Matsuo, A., et al., 2004, Pressure history at the thrust wall of a simplified pulse detonation engine, AIAA J., 42(9), pp. 1921-1930. 10.2514/1.976.10.2514/1.976
  61. [61] Chen, W., Fan, W., Qiu, H., et al., 2012, Thermodynamic performance analysis of turbofan engine with a pulse detonation duct heater, Aero. Sci. Technol., 23(1), pp. 206-212. 10.1016/j.ast.2011.07.002.10.1016/j.ast.2011.07.002
  62. [62] Li, J., Fan, W., Wang, Y., et al., 2010, Performance analysis of the pulse detonation rocket engine based on constant volume cycle model, Appl. Therm. Eng., 30(11-12), pp. 1496-1504. 10.1016/j.applthermaleng.2010.03.017.10.1016/j.applthermaleng.2010.03.017
  63. [63] Ma, F., Choi, J.Y. and Yang, V., 2006, Propulsive performance of airbreathing pulse detonation engines, j. Propul. Power, 22(6), pp. 1188-1203. 10.2514/1.21755.10.2514/1.21755
  64. [64] Schwer, D.A. and Kailasanath, K., 2011, Numerical study of the effects of engine size on rotating detonation engines, AIAA 2011-581. 10.2514/6.2011-581.10.2514/6.2011-581
  65. [65] Kaemming, T.A., Fotia, M.L., Hoke, J., et al., 2017, Thermodynamic modeling of a rotating detonation engine through a reduced-order approach, J. Propul. Power, 33(5), pp. 1170-1178. 10.2514/1.B36237.10.2514/1.B36237
  66. [66] Bykovskii, F.A., Zhdan, S.A. and Vedernikov, E.F., 2006, Continuous spin detonations, J. Propul. Power, 22(6), pp. 1204-1216. 10.2514/1.17656.10.2514/1.17656
  67. [67] Suchocki, J., Yu, S., Hoke, J., et al., 2012, Rotating detonation engine operation, AIAA Paper 2012-0119. 10.2514/6.2012-119.10.2514/6.2012-119
  68. [68] Liu, S., Liu, W., Lin, Z., et al., 2015, Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary, Combust. Sci. Technol., 187, pp. 1790-1804. 10.1080/00102202.2015.1019620.10.1080/00102202.2015.1019620
  69. [69] Xie, Q., Wen, H., Li, W., et al., 2018, Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition, Energy, 151, pp. 408-419. 10.1016/j.energy.2018.03.062.10.1016/j.energy.2018.03.062
  70. [70] Saracoglu, B.H. and Ozden, A., 2018, The effects of multiple detonation waves in the RDE flow field, Transp. Res. Proc., 29, pp. 390-400. 10.1016/j.trpro.2018.02.035.10.1016/j.trpro.2018.02.035
  71. [71] Tsuboi, N., Eto, S., Hayashi, A.K., et al., 2017, Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine, J. Propul. Power, 33(1) pp. 100-111. 10.2514/1.B36095.10.2514/1.B36095
  72. [72] Katta, V.R., Cho, K.Y., Hoke, J.L., et al., 2019, Effect of increasing channel width on the structure of rotating detonation wave, Proc. Combust. Inst., 37(3), pp. 3575-3583. 10.1016/j.proci.2018.05.072.10.1016/j.proci.2018.05.072
  73. [73] Ji, Z., Zhang, H. and Wang, B., 2019, Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerosp. Sci. Technol., 92, pp. 806-819. 10.1016/j.ast.2019.07.011.10.1016/j.ast.2019.07.011
  74. [74] Ji, Z., 2019, Comprehensive performance analysis of the continuous rotating detonation based airbreathing propulsion systems, PhD Dissertation, Tsinghua University.
  75. [75] Ji, Z., Zhang, H., Wang, B., and He, W. (January 10, 2020). Comprehensive Performance Analysis of the Turbofan With a Multi-Annular Rotating Detonation Duct Burner. ASME. J. Eng. Gas Turbines Power, 142(2), p. 021007. 10.1115/1.4045518.10.1115/1.4045518
  76. [76] Schwer, D.A. and Kailasanath, K., 2012, Feedback into mixture plenums in rotating detonation engines, AIAA Paper, 2012-0617. 10.2514/6.2012-617.10.2514/6.2012-617
  77. [77] Schwer, D.A. and Kailasanath, K., 2013, On reducing feedback pressure in rotating detonation engines, AIAA Paper, 2013-1178. 10.2514/6.2013-1178.10.2514/6.2013-1178
  78. [78] Anand, V., George, St A., Driscoll, R., et al., 2016, Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor, Exp. Therm. Fluid Sci., 70, pp. 408-416. 10.1016/j.expthermflusci.2015.10.007.10.1016/j.expthermflusci.2015.10.007
  79. [79] Zhou, S., Ma, H., Li, S., et al., 2017, Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics, Int. j. Hydrog. Energy, 42, pp. 20297-20305. 10.1016/j.ijhydene.2017.06.115.10.1016/j.ijhydene.2017.06.115
  80. [80] Zhou, S., Ma, H., Liu, D., et al., 2017, Experimental study of a hydrogen-air rotating detonation combustor, Int. J. Hydrog. Energy, 42, pp. 14741-14749. 10.1016/j.ijhydene.2017.04.214.10.1016/j.ijhydene.2017.04.214
  81. [81] Liu, Z., Braun, J., and Paniagua, G., 2018, Three dimensional optimization for subsonic axial turbines operating at high unsteady inlet Mach number, AIAA Paper 2018-4480. 10.2514/6.2018-4480.10.2514/6.2018-4480
  82. [82] Liu, Z., Braun, J., and Paniagua, G., 2019, Characterization of a supersonic turbine downstream of a rotating detonation combustor, ASME J. Eng. gas Turbines Power, 141(3), pp. 031501. 10.1115/1.4040815.10.1115/1.4040815
  83. [83] Wolański, P., 2015, Application of the continuous rotating detonation to gas turbine, Appl. Mech. Mater. 782, pp. 3-12. 10.4028/www.scientific.net/AMM.782.3.10.4028/www.scientific.net/AMM.782.3
  84. [84] Naples, A., Hoke, J., Battelle, R., Wagner, M. and Schauer, F., 2017, Rotating detonation engine implementation into an open-loop T63 gas turbine engine, AIAA Paper 2017-1747. 10.2514/6.2017-1747.10.2514/6.2017-1747
  85. [85] Sousa, J., Paniagua, G. and Morata, E.C., 2017, Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor, Appl. Energy, 195, pp. 247-256. 10.1016/j.apenergy.2017.03.045.10.1016/j.apenergy.2017.03.045
  86. [86] Ji, Z., zhang, H. and Wang, B., 2019, Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine, Proc. IME G J. Aero. Eng., 233(13), pp. 4810-4824. 10.1177/0954410019830816.10.1177/0954410019830816
  87. [87] Segal, C., 2009, The scramjet engine: processes and characteristics. 1st ed. New York: Cambridge University Press.10.1017/CBO9780511627019
  88. [88] Ji, Z., Zhang, H., Xie, Q., et al., 2018, Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine, J. Tsinghua Univ. (Sci. Technol.), 58(10), pp. 899-905. 10.16511/j.cnki.qhdxxb.2018.26.040.
  89. [89] Braun, E.M., Lu, F.K., Wilson, D.R., et al., 2013, Airbreathing rotating detonation wave engine cycle analysis, Aerosp. Sci. Technol., 27(1), pp. 201-208. 10.1016/j.ast.2012.08.010.10.1016/j.ast.2012.08.010
  90. [90] Mizener, A.R. and Lu, F.K., 2017, Low-order parametric analysis of a rotating detonation engine in rocket mode, J. Propul. Power, 33, pp. 1543-1554. 10.2514/1.B3643210.2514/1.B36432
  91. [91] Fievisohn, R.T. and Yu, K.H., 2017, Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, J. Propul. Power, 33(1), pp. 89-99. 10.2514/1.B3610310.2514/1.B36103
  92. [92] Sousa, J., Braun, J. and Paniagua, G., 2017, Development of a fast evaluation tool for rotating detonation combustors, Appl. Math. Model, 52, pp. 42-52. 10.1016/j.apm.2017.07.01910.1016/j.apm.2017.07.019
  93. [93] Voitsekhovskii, B.V., 1959, Statsionarnaya dyetonatsiya. Doklady Akademii Nauk SSSR, 129(6), pp. 1254-1256.
  94. [94] Bykovskii, F.A. Zhdan, S.A., 2013, Continuously detonation engine. Doklady Akademii Nauk.
  95. [95] Bykovskii, F.A. Mitrofanov, V.V. Vedernikov, E.F., 1997, Continuous detonation combustion of fuel-air mixtures. Combust. Explos. Shock Waves, 33(3), pp. 344-353. 10.1007/BF02671875.10.1007/BF02671875
  96. [96] Bykovskii, F.A. and Mitrofanov, V.V., 2000, “A continuous spin detonation in liquid fuel sprays.” Control of Detonation Processes, edited by G.D. Roy, S.M. Frolov, D.W. Netzer, and A.A. Borisov, Elex-kM Publishers, Moscow, pp. 209-211.
  97. [97] Bykovskii, F.A. and Vedernikov, E.F., 2003, Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock Waves, 39(3), pp. 323-334. 10.1023/A:1023800521344.
  98. [98] Bykovskii, F.A. Zhdan, S.A., Vedernikov, E.F., 2005, Continuous spin detonation in annular combustors. Combust., Explos. Shock Waves, 41(4), pp. 449-459. 10.1007/s10573-005-0055-6.10.1007/s10573-005-0055-6
  99. [99] Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F., 2006, Continuous spin detonation of fuel-air mixtures.Combust., Explos. Shock Waves, 2006, 42(4), pp. 463-471. 10.1007/s10573-006-0076-9.10.1007/s10573-006-0076-9
  100. [100] Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F., 2006, Continuous spin detonations. j. Propul. Power, 22(6), pp. 1204-1216. 10.2514/1.17656.10.2514/1.17656
  101. [101] Frolov, S.M., Aksenov, V.S., Ivanov, V.S., 2015, Experimental proof of zel’dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture. Int. J. Hydrogen Energy, 40(21), pp. 6970-6975. 10.1016/j.ijhydene.2015.03.128.10.1016/j.ijhydene.2015.03.128
  102. [102] Frolov, S.M., Aksenov, V.S., Gusev, P.A., Ivanov, V.S., Medvedev, S.N., et al., 2015, Experimental studies of small samples bench engine with a continuously-detonation combustors. gorenie Vzryv, 8(1), pp. 151-163.
  103. [103] Frolov, S.M., Aksenov, V.S., Ivanov, V.S., et al., 2015, large-scale hydrogen-air continuous detonation combustor. Int. J. Hydrogen Energy, 40(3), pp. 1616-1623. 10.1016/j.ijhydene.2014.11.112.10.1016/j.ijhydene.2014.11.112
  104. [104] Frolov, S.M., Aksenov, V.S., Dubrovskii, A.V., et al., 2015, Energy efficiency of a continuous-detonation combustion chamber. Combust. Explos. Shock Waves, 51(2), pp. 232-245. 10.1134/S0010508215020070.10.1134/S0010508215020070
  105. [105] Frolov, S.M., Zvegintsev, V.I., Ivanov, V.S., et al., 2017, Demonstrator of continuous-detonation air-breathing ramjet: Wind tunnel data. Doklady Physical Chemistry, 474(1), pp. 75-79. 10.1134/S0012501617050013.10.1134/S0012501617050013
  106. [106] The first successful test launch of a new generation of green propellant liquid fuel rocket engine in Russia, 2016, from http://fpi.gov.ru/press/news/20160826.
  107. [107] Nicholls, J.A., 1962, “The feasibility of a rotating detonation wave rocket motor. Feasibility of A Rotating Detonation Wave Rocket Motor.” The University of Michigan.
  108. [108] Russo, R., King, P., Schauer, F. and Lewis, T., 2013, Characterization of Pressure Rise Across a Continuous Detonation Engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 10.2514/6.2011-6046.
  109. [109] Russo, Rachel M., 2011, “Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air.” Theses and Dissertations. 1352. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
  110. [110] Shank, J., King, P., Karnesky, J., et al., 2012, “Development and testing of a modular rotating detonation engine.” 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA 2012-0120. 10.2514/6.2012-120.10.2514/6.2012-120
  111. [111] Shank, J.C., 2012, “Development and testing of a rotating detonation engine run on hydrogen and air.” Thesis. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
  112. [112] Thomas, L., Schauer, F., Hoke, J., et al., 2011, “Buildup and operation of a rotating detonation engine.” 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-602. 10.2514/6.2011-602.10.2514/6.2011-602
  113. [113] Tellefsen, J., King, P., Schauer, F. and Hoke, J., 2012, “Analysis of an RDE with convergent nozzle in preparation for turbine integration.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2012-0773. 10.2514/6.2012-773.10.2514/6.2012-773
  114. [114] Tellefsen, J., 2012, “Build up and operation of an axial turbine driven by a rotary detonation engine.” Theses and Dissertations, Air Force Inst of Tech Wright-Patterson Afb oh graduate School of Engineering and Management. 1071. https://scholar.afit.edu/etd/1071.
  115. [115] Fotia, M., Kaemming, T.A., Hoke, J., et al., 2015, “Study of the experimental performance of a rotating detonation engine with nozzle exhaust flow.” 53rd AIAA Aerospace Sciences Meeting. AIAA 2015-0631. 10.2514/6.2015-0631.10.2514/6.2015-0631
  116. [116] Fotia, M., 2015, Update on Air Breathing Detonation Driven Propulsion Research. International Workshop on Detonation for Propulsion.
  117. [117] Fotia, M., Hoke, J., Schauer, F., 2017, Experimental performance scaling of rotating detonation engines operated on gaseous fuels. J. Propul. Power, Vol. 33(5), pp. 1-10. 10.2514/1.B36213.10.2514/1.B36213
  118. [118] Fotia, M., 2016, Thermodynamics Modelling and the Operation of Rotating Detonation Engines at Elevated Inlet Temperatures. International Workshop on Detonation for Propulsion.
  119. [119] Theuerkauf, S.W., Schauer, F., Anthony, R., et al., 2014, “Average and Instantaneous Heat Release to the Walls of an RDE.” 52nd Aerospace Sciences Meeting. 1503.10.2514/6.2014-1503
  120. [120] Theuerkauf, S.W., Schauer, F., Anthony, R., et al., 2015, “Experimental characterization of high-frequency heat flux in a rotating detonation engine.” 53rd AIAA Aerospace Sciences Meeting. 1603.10.2514/6.2015-1603
  121. [121] Theuerkauf, S.W., Schauer, F., Anthony, R., et al., 2016, “Comparison of simulated and measured instantaneous heat flux in a rotating detonation engine.” 54th AIAA Aerospace Sciences Meeting. 1200.10.2514/6.2016-1200
  122. [122] Braun, J. Sousa, J. Paniagua. G., 2016, “Assessment of the boundary layer within a Rotating Detonation Combustor.” 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 4557.10.2514/6.2016-4557
  123. [123] Meyer, S.J., Polanka, M.D., Schauer, F., et al., 2017, Experimental Characterization of Heat Transfer Coefficients in a Rotating Detonation Engine.” 55th AIAA Aerospace Sciences Meeting. 1285.10.2514/6.2017-1285
  124. [124] Rankin, B.A., Richardson, D.R., Caswell, A.W., et al., 2015, Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine.” 53rd AIAA Aerospace Sciences Meeting. 1604.10.2514/6.2015-1604
  125. [125] Rankin, B.A., Richardson, D.R., Caswell, A.W., et al., 2017, Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame, 176(1), pp. 12-22. 10.1016/j.combustflame.2016.09.020.10.1016/j.combustflame.2016.09.020
  126. [126] Kailasanath, K., 2011, “The Rotating Detonation-Wave Engine Concept: A Brief Status Report.” 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 580.10.2514/6.2011-580
  127. [127] Kailasanath, K., 2017, “Recent developments in the research on rotating-detonation-wave engines.” 55th AIAA Aerospace Sciences Meeting. 0784.10.2514/6.2017-0784
  128. [128] Schwer, D. and Kailasanath, K., 2010, “Numerical investigation of rotating detonation engines.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6880.10.2514/6.2010-6880
  129. [129] Schwer, D. and Kailasanath, K., 2011, “Effect of inlet on fill region and performance of rotating detonation engines.” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6044.10.2514/6.2011-6044
  130. [130] Schwer, D. and Kailasanath, K., 2011, “Numerical Study of the Effects of Engine Size n Rotating Detonation Engines.” 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 581.10.2514/6.2011-581
  131. [131] Schwer, D. and Kailasanath, K., 2012, “Feedback into mixture plenums in rotating detonation engines.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 617.10.2514/6.2012-617
  132. [132] Schwer, D. and Kailasanath, K., 2016, Characterizing NOx Emissions for Air-Breathing Rotating Detonation Engines.” 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 4779.10.2514/6.2016-4779
  133. [133] Edward, D.L., Jeffrey, S., et al., 2015, “Rotating Detonation Combustion for gas Turbines – Modeling and System Synthesis to Exceed 65% Efficiency goal.” University Turbine Systems Research Workshop. 23983.
  134. [134] Ferguson, D., 2016, “Overview of Pressure gain Combustion Studies at NETl.” University Turbine Systems Research Workshop. 2301.
  135. [135] Anand, V., George, A.S., Driscoll, R., et al., 2015, Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy, 40(46), pp. 16649-16659. 10.1016/j.ijhydene.2015.09.046.10.1016/j.ijhydene.2015.09.046
  136. [136] Anand, V., George, A.S., Driscoll, R., et al., 2016, Investigation of rotating detonation combustor operation with H2-air mixtures. Int. J. Hydrogen Energy, 41(2), pp. 1281-1292. 10.1016/j.ijhydene.2015.11.041.10.1016/j.ijhydene.2015.11.041
  137. [137] Anand, V., George, A.S., Driscoll, R., et al., 2016, Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor. Exp. Therm. Fluid Sci, 70, pp. 408-416. 10.1016/j.expthermflusci.2015.10.007.10.1016/j.expthermflusci.2015.10.007
  138. [138] Driscoll, R., Aghasi, P., George, S.A., et al., 2016, Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. j. Hydrogen Energy, 41(9), pp. 5162-5175. 10.1016/j.ijhydene.2016.01.116.10.1016/j.ijhydene.2016.01.116
  139. [139] Suchocki, J., Yu, S.T., Hoke, J., et al., 2012, “Rotating detonation engine operation.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 119.10.2514/6.2012-119
  140. [140] Braun, E., Dunn, N. and Lu, F., 2010, “Testing of a continuous detonation wave engine with swirled injection.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 146.10.2514/6.2010-146
  141. [141] Braun, E., Balcazar, T.S., Wilson, D.R., et al., 2012, Experimental Study of a High-Frequency Fluidic Valve Fuel Injector. j. Propul. Power, 28(5), pp. 1121-1125. 10.2514/1.B3444210.2514/1.B34442
  142. [142] Heister, S., Slabaugh, C., et al., 2016, “Advancing Pressure gain Combustion in Terrestrial Turbine Systems.” University Turbine Systems Research Workshop. 1004.
  143. [143] Daniau, E., Falempin, F., Getin, N., et al., 2006, Design of a continuous detonation wave engine for space application.” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 4794.10.2514/6.2006-4794
  144. [144] Falempin, F., Daniau, E., Getin, N., et al., 2006, “Toward a continuous detonation wave rocket engine.” 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. 7956.10.2514/6.2006-7956
  145. [145] Falempin, F. and Daniau, E., 2008, “A contribution to the development of actual continuous detonation wave engine.” 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2679.10.2514/6.2008-2679
  146. [146] Falempin, F. and Naour, B., 2009, “R&T effort on pulsed and continuous detonation wave engines.” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 7284.10.2514/6.2009-7284
  147. [147] Falempin, F., Naour, B. and Miquel, F., 2011, “Recent experimental results obtained on continuous detonation wave engine.” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2235.10.2514/6.2011-2235
  148. [148] Eude, Y., Davidenko, D., Falempin, F., et al., 2011, “Use of the adaptive mesh refinement for 3D simulations of a CDWRE (continuous detonation wave rocket engine).” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2236.10.2514/6.2011-2236
  149. [149] Davidenko, D., Eude, Y., Falempin, F., 2009, “Numerical study on the annular nozzle optimization for rocket application.” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 7390.10.2514/6.2009-7390
  150. [150] Wolanski, P. and Kindracki, J., 2009, Research on continuous rotating detonation and its applications to jet propulsion. ISABE, 2009-1313.
  151. [151] Kindracki J., Wolański, P., Gut, Z., 2011, Experimental research on the rotating detonation in gaseous fuels-oxygen mixture. Shock Waves, 21(2), pp. 75-84. 10.1007/s00193-011-0298-y.10.1007/s00193-011-0298-y
  152. [152] Kindracki, J., 2012, Experimental studies of kerosene injection into a model of a detonation chamber. J. Power Technol., 92(2), p. 80.
  153. [153] Kindracki, J., 2015, Experimental research on rotating detonation in liquid fuel-gaseous air mixtures. Aerosp. Sci. Technol., 43, pp. 445-453. 10.1016/j.ast.2015.04.006.10.1016/j.ast.2015.04.006
  154. [154] Tobita, A., Fujiwara, T., Wolanski, P., 2010, “Detonation engine and flying object provided therewith.” U.S. Patent, 7,784,267.
  155. [155] Wolański, P., 2015, Application of the continuous rotating detonation to gas turbine.” Applied Mechanics and Materials, 782, pp. 3-12. 10.4028/www.scientific.net/amm.782.3.10.4028/www.scientific.net/AMM.782.3
  156. [156] Kindracki, J., 2016, Recent research on the rotating detonation at Warsaw University of Technology. Transactions of the Institute of Aviation, 245, pp. 37-45.10.5604/05096669.1226351
  157. [157] Kawalec, M., Wolański, P., et al., 2016, “Influence of mixture on performance of rotating detonation rocket engine.” International Constant-Volume and Detonation Combustion Workshop.
  158. [158] Wolański, P., 2018, “Research Progress in Poland.” International Workshop on Detonation for Propulsion.
  159. [159] Folusiak, M., Kobiera, A. and Wolański, P., 2010, Rotating detonation engine simulations in-house code-REFloPS. Transactions of the Institute of Aviation, 207, pp. 3-12.
  160. [160] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2011, “graphics Processors as a tool for rotating detonation simulations.” 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, University of California, Irvine.
  161. [161] Folusiak, M., Swiderski, K., Kindracki, J., et al., 2013, “Assessment of numerical simulations of RDE combustion chamber”. 24th ICDERS, Taipei, Taiwan.
  162. [162] Folusiak, M., Swiderski, K., Kindracki, J., et al., 2013, “Improving accuracy and performance of Rotating Detonation Engine simulations.” European Conference for AeroSpace Sciences.
  163. [163] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2013, Three-dimensional numerical simulations of the combustion chamber of the rotating detonation engine. journal of kONES, 20(1), pp. 83-88.10.5604/12314005.1135319
  164. [164] Folusiak, M., Swiderski, K., Kobiera, A., et al., 2013, Numerical tools for three dimensional simulations of the rotating detonation engine in complex geometries. journal of kONES, 20(1), pp. 329-336.10.5604/12314005.1136193
  165. [165] Swiderski, K., Folusiak, M., Lukasik, B., et al., 2013, Three-dimensional numerical study of the propulsion system based on rotating detonation using Adaptive Mesh Refinement. ICDERS, Taipei, Taiwan.10.5604/12314005.1135319
  166. [166] Hishida, M., Fujiwara, T., Wolański, P., 2009, Fundamentals of rotating detonations. Shock waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.10.1007/s00193-008-0178-2
  167. [167] Hayashi, A.K., Kimura, Y., Yamada, T., et al., 2009, “Sensitivity analysis of rotating detonation engine with a detailed reaction model.” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 633.10.2514/6.2009-633
  168. [168] Tsuboi, N., Watanabe, Y., Kojima, T., et al., 2015, Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture. Proc. Combust. Inst., 35(2), pp. 2005-2013.10.1016/j.proci.2014.09.010
  169. [169] Yamada, T., Hayashi, A.K., Tsuboi, N., et al., 2010, “Numerical analysis of threshold of limit detonation in rotating detonation engine.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 153.10.2514/6.2010-153
  170. [170] Tsuboi, N., Hayashi, A.K., et al., 2016, “Simulation on rotating detonation engine: effects of converging-diverging nozzle, non-uniform injection, and hydrocarbon-fueled detonation.” International Workshop on Detonation for Propulsion.
  171. [171] Kasahara, J., Kato, Y., Ishihara, K., et al., 2016, “Research and development of rotating detonation engine for upper-stage kick motor system.” International Workshop on Detonation for Propulsion.
  172. [172] Yi, T.H., Turangan, C., Lou, J., et al., 2009, “A three-dimensional numerical study of rotational detonation in an annular chamber.” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 634.10.2514/6.2009-634
  173. [173] Yi, T.H., Lou, J., Turangan, C., et al., 2010, “Effect of Nozzle Shapes on the Performance of Continuously-Rotating Detonation Engine.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 152.10.2514/6.2010-152
  174. [174] Yi, T.H., Lou, J., Turangan, C., et al., 2011, Propulsive performance of a continuously rotating detonation engine. j. Propul. Power, 27(1), pp. 171-181. 10.2514/1.46686.10.2514/1.46686
  175. [175] Choi, J.Y., 2016, “Research progress of detonation studies for propulsion in PNU.” International Workshop on Detonation for Propulsion.
  176. [176] Liu, S.j., Lin, Z.Y., Sun, M.B., et al., 2010, Two-dimensional numerical simulation of rotating detonation wave engine. J. Propul. Technol, 31(5), pp. 634-640 (in Chinese).
  177. [177] Liu, S.j., Qin, H., Lin, Z.Y., et al., 2011, Detailed structure and propagating mechanism research on continuous rotating detonation wave. J. Propul. Technol, 32(3), pp. 431-436 (in Chinese).
  178. [178] Liu, S.j. Lin, Z.Y., Sun, M.B., et al., 2010, Numerical Simulation of Cell Detonation Using Different Chemical Reacting Source Term Methods. J. Natl. Univ. Def. Technol., 5, pp. 01-06 (in Chinese).
  179. [179] Liu, S.j. Lin, Z.Y., Sun, M.B., et al., 2011, Thrust vectoring of a continuous rotating detonation engine by changing the local injection pressure. Chin. Phys. Lett., 28(9), pp. 094704.10.1088/0256-307X/28/9/094704
  180. [180] Liu, S.j., Lin, Z.Y., Liu, W.D., et al., 2012, Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor. Combust. Sci. Technol., 184(9), pp. 1302-1317. 10.1080/00102202.2012.682669.10.1080/00102202.2012.682669
  181. [181] Liu, S.j., Lin, Z.Y., Liu, W.D., et al., 2013, Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(2), pp. 326-341. 10.1177/0954410011433542.10.1177/0954410011433542
  182. [182] Lin, W., Zhou, J., Lin, Z.Y., et al., 2015, Numerical simulation of detonation onset by hot jets. J. Natl. Univ. Def. Technol., 37(1), pp. 70-77 (in Chinese).
  183. [183] Zhou, Z.L., Liu, W.D., Liu, S.j., et al., 2013, Investigation on Propagation Process of Detonation Wave Influenced by lateral Expansion. J. Propul. Technol, 34(5), pp. 713-720 (in Chinese).
  184. [184] Wang, D., Zhou, J. and Zhou, Z.L., 2015, Numerical Simulation on the Working Process of the Hydrogen-Oxygen Continuous Rotating Engine with an Expansive Nozzle. Tactical Missile Technology, 2015(6), pp. 57-65 (in Chinese).
  185. [185] Liu, S.j., Liu, W.D., Lin, Z.Y., et al., 2017, “Experimental Research on the Continuous Rotating Detonation Ramjet Engine.” The 9th National Hypersonic Technology Conference.10.2514/6.2017-2282
  186. [186] Ma, H., Feng, F., Wu, X.S., et al., 2012, Effect of Pressure Condition on Rotating Detonation Engine. J. Ballist., 24(4), pp. 94-98.
  187. [187] Chen, J., Wang, D., Ma, H., et al., 2013, Influence of Axial length on Rotating Detonation Engine. J. Aerosp. Power, 28(4), pp. 844-849 (in Chinese).
  188. [188] Gao, J., Wu, X.S., Ma, H., et al., 2016, Experiment of Effect of Nozzle Shapes on the Performance of Rotating Detonation Engine. J. Aerosp. Power, 31(10), pp. 2443-2453 (in Chinese).
  189. [189] Gao, J., Wu, X.S., Ma, H., et al., 2016, Experimental Research on Rotating Detonation Engines with Different Combustion Chamber Length. J. Propul. Technol, 37(10), pp. 1991-2000 (in Chinese).
  190. [190] Zhou, S.B., Wang, D., Ma, H., et al., 2016, “Experimental Study on Rotating Detonation with Small Oxidizer Injection Area.” The first joint conference on Aerospace Power (in Chinese).
  191. [191] Xu, C., Ma, H., Yan, Y., et al., 2017, Experimental Study on Operating Characteristics of Rotating Detonation Engine. j. Ballist., 29(3), pp. 74-81 (in Chinese).
  192. [192] Ma, H., Feng, F., Wu, X.S., et al., 2012, Effect of pressure condition on rotating detonation engine. J. Ballist., 24(4), pp. 94-98.
  193. [193] Zhou, S., Ma, H., Liu, D., et al., 2017, Experimental study of a hydrogen-air rotating detonation combustor. Int. J. Hydrogen Energy, 42(21), pp. 14741-14749. 10.1016/j.ijhydene.2017.04.214.10.1016/j.ijhydene.2017.04.214
  194. [194] Peng, L., Wang, D., Wu, X., et al., 2015, Ignition experiment with automotive spark on rotating detonation engine. Int. j. Hydrogen Energy, 40(26), pp. 8465-8474. 10.1016/j.ijhydene.2015.04.126.10.1016/j.ijhydene.2015.04.126
  195. [195] Zheng, Q., Weng, C.S. and Bai, Q.D., 2014, Experiment on Continuous Rotating Detonation Engine with Tilt Slot Injector. j. Propul. Technol., 35(4), pp. 570-576 (in Chinese).
  196. [196] Zheng, Q., Weng, C.S. and Bai, Q.D., 2015, Experimental Study on Effects of Equivalence Ratio on Detonation Characteristics of liquid-Fueled Rotating Detonation Engine. J. Propul. Technol, 36(6), pp. 947-952 (in Chinese).
  197. [197] Li, B.X. and Weng, C.S., 2018, Influence of liquid Fuel on the Detonation Characteristics of Continuous Rotating Detonation Engine. Explosion and Shock Waves, 38(2), pp. 331-338 (in Chinese).
  198. [198] Wang, Y.Y. and Weng, C.S., 2013, Effects of Nozzle on Flow Field and Performance of Multi-Cycle Two-Phase Pulse Detonation Engines. J. Aerosp. Power, 28(10), pp. 2256-2266 (in Chinese).
  199. [199] Shao, Y.T., Liu, M., Wang, J.P., 2009, Numerical Simulation of Continuous Rotating Detonation Engine in Column Coordinate. J. Propul. Technol, 30(6), pp. 717-721 (in Chinese).
  200. [200] Tang, X.M., Wang, J.P. and Shao, Y.T., 2013, 3-D Simulation of Rotating Detonation Wave in Combustion Chambers Without Inner Wall. J. Aerosp. Power, 28(4), pp. 792-799 (in Chinese).
  201. [201] Wu, D., Liu, Y., Wang, J.P., 2015, Three-Dimensional Numerical Simulation of the Parametric Properties of Continuously Rotating Detonation Engine. J. Aerosp. Power, 30(7), pp. 1576-1582 (in Chinese).
  202. [202] Shao, Y.T. and Wang, J.P., 2009, Two-Dimensional Simulation of Continuous Detonation Engine. J. Aerosp. Power, 24(5), pp. 980-987 (in Chinese).
  203. [203] Wu, D. and Wang, J.P., 2012, Influences of Viscosity and Thermal Conductivity on Detonation Waves. Chin. J. Appl. Mech, 29(6), pp. 630-635 (in Chinese).
  204. [204] Wang, Y., Wang, J.P., Li, Y., et al., 2014, Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow. Int. J. Hydrogen Energy, 39(22), pp. 11792-11797. 10.1016/j.ijhydene.2014.05.162.10.1016/j.ijhydene.2014.05.162
  205. [205] Wu, D., Liu, Y., Liu, Y., et al., 2014, Numerical investigations of the restabilization of hydrogen-air rotating detonation engines. Int. J. Hydrogen Energy, 39(28), pp. 15803-15809. 10.1016/j.ijhydene.2014.07.159.10.1016/j.ijhydene.2014.07.159
  206. [206] Zhou, R. and Wang, J.P., 2012, Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combust. Flame, 159(12), pp. 3632-3645. 10.1016/j.combustflame.2012.07.007.10.1016/j.combustflame.2012.07.007
  207. [207] Shao, Y.T., Li, M. and Wang, J.P., 2010, Continuous detonation engine and effects of different types of nozzle on its propulsion performance. Chin. j. Aeronaut, 23(6), pp. 647-652. 10.1016/S1000-9361(09)60266-1.10.1016/S1000-9361(09)60266-1
  208. [208] Shao, Y.T., Liu, M. and Wang, J.P., 2010, Numerical investigation of rotating detonation engine propulsive performance. Combust. Sci. Technol., 182(11-12), pp. 1586-1597. 10.1080/00102202.2010.497316.10.1080/00102202.2010.497316
  209. [209] Shao, Y.T. and Wang, J.P., 2010, Change in continuous detonation wave propagation mode from rotating detonation to standing detonation. Chin. Phys. lett., 27(3), pp. 034705. 10.1088/0256-307X/27/3/034705.10.1088/0256-307X/27/3/034705
  210. [210] Tang, X.M., Wang, J.P. and Shao, Y.T., 2015, Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame, 162(4), pp. 997-1008. 10.1016/j.combustflame.2014.09.023.10.1016/j.combustflame.2014.09.023
  211. [211] Wang, Y. and Wang, J., 2015, Effect of equivalence ratio on the velocity of rotating detonation. Int. j. Hydrogen Energy, 40(25), pp. 7949-7955. 10.1016/j.ijhydene.2015.04.072.10.1016/j.ijhydene.2015.04.072
  212. [212] Xie, Q. and Wang, B., 2014, “Performance analysis of rotating detonation rocket based combined cycle propulsion.” 6th European Conference For Aeronautics and Space Sciences.
  213. [213] Xie, Q. and Wang, B., 2015, “Performance analysis of propulsion powered by rotating detonation rocket based combined cycle.” 22rd International Society for Air Breathing Engines.
  214. [214] Wang, B., Xie, Q. and Zhang, H., 2013, “key technical analysis of liquid rocket based combined cycle propulsion.” 21rd International Society for Air Breathing Engines.
  215. [215] Wang, B., Xie, Q., Zou, M., et al., 2013, “Theoretic analysis of ejector mode of rocket based combined cycle propulsion.” 5th European Conference For Aeronautics and Space Sciences.
  216. [216] Wang, B., Xie, Q. and Wen, H., 2016, “Stabilities of rotation detonation.” 1st International Conference in Aerospace for Young Scientists.
  217. [217] Wen, H., Xie, Q. and Wang, B., 2017, “Stabilities of rotation detonation.” 31st International Symposium on Shock Waves-Part 1: fundamentals, Springer.
  218. [218] Xie, Q., Wen, H., Li, W., Ji, Z., Wang, B., et al., 2018, Analysis of Operating Diagram for H2/Air Rotating Detonation Combustors under lean Fuel Condition. Energy, 151, pp. 408-419. 10.1016/j.energy.2018.03.06210.1016/j.energy.2018.03.062
  219. [219] Xie, Q., Wang, B., Wen, H., et al., 2018, Thermoacoustic Instabilities in an Annular Rotating Detonation Combustor Under Off-Design Condition. J. Propul. Power, 35(1), pp. 141-151. 10.2514/1.B37044.10.2514/1.B37044
  220. [220] Xie, Q., Wang, B., Wen, H., et al., 2019, Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air. Proc. Combust. Inst., 37(3), pp. 3425-3432. 10.1016/j.proci.2018.08.046.10.1016/j.proci.2018.08.046
  221. [221] Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S., 2013, Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russian journal of Physical Chemistry B, 7(1), pp. 35-43. 10.1134/S1990793113010119.10.1134/S1990793113010119
  222. [222] Schwer, D. and Kailasanath, K., 2011, Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst., 33(2), pp. 2195-2202. 10.1016/j.proci.2010.07.050.10.1016/j.proci.2010.07.050
  223. [223] Schwer, D. and Kailasanath, K., 2010, “Numerical investigation of rotating detonation engines.” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6880.10.2514/6.2010-6880
  224. [224] Lin, W., Zhou, J., Liu, S., et al., 2015, Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy, 40(4), pp. 1980-1993. 10.1016/j.ijhydene.2014.11.119.10.1016/j.ijhydene.2014.11.119
  225. [225] Wu, D., Zhou, R., Liu, M., et al., 2014, Numerical investigation of the stability of rotating detonation engines. Combust. Sci. Technol., 186(10-11), pp. 1699-1715. 10.1080/00102202.2014.935641.10.1080/00102202.2014.935641
  226. [226] Thomas, G.O., Sutton, P. and Edwards, D.H., 1991, The behavior of detonation waves at concentration gradients. Combust. Flame, 84(3-4), pp. 312-322. 10.1016/0010-2180(91)90008-Y.10.1016/0010-2180(91)90008-Y
  227. [227] Ishii, K. and Kojima, M., 2007, Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves, 17(1-2), pp. 95-102. 10.1007/s00193-007-0093-y.10.1007/s00193-007-0093-y
  228. [228] Boeck, L.R., Berger, F.M., Hasslberger, J., et al., 2016, Detonation propagation in hydrogen-air mixtures with transverse concentration gradients. Shock Waves, 26(2), pp. 181-192. 10.1007/s00193-015-0598-8.10.1007/s00193-015-0598-8
  229. [229] Boulal, S., Vidal, P. and Zitoun, R., 2016, Experimental investigation of detonation quenching in non-uniform compositions. Combust. Flame, 2016, 172, pp. 222-233. 10.1016/j.combustflame.2016.07.022.10.1016/j.combustflame.2016.07.022
  230. [230] Cullen, R.E., Nicholls, J.A. and Ragland, K.W., 1966, Feasibility studies of a rotating detonation wave rocket motor. j. Spacecr. Rockets, 3(6), pp. 893-898. 10.2514/3.28557.10.2514/3.28557
  231. [231] Braun, E., Dunn, N. and Lu, F., 2010, “Testing of a continuous detonation wave engine with swirled injection.” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 146.10.2514/6.2010-146
  232. [232] Bykovskii, F.A., Zhdan, S.A. and Vedernikov, E.F., 2014, Initiation of detonation of fuel-air mixtures in a flow-type annular combustor. Combustion, Explosion and Shock Waves, 50(2), pp. 214-222. 10.1134/S0010508214020130.10.1134/S0010508214020130
  233. [233] Lu, F.K. and Braun, E., 2014, Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propul. Power, 30(5), pp. 1125-1142. 10.2514/1.B3480210.2514/1.B34802
  234. [234] Lentsch, A., Bec, R., Serre, L., et al., 2005, “Overview of current French activities on PDRE and continuous detonation wave rocket engines.” AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. 3232.10.2514/6.2005-3232
  235. [235] Yang, C., Wu, X., Ma, H., et al., 2016, Experimental research on initiation characteristics of a rotating detonation engine. Exp. Therm. Fluid Sci, 71, pp. 154-163. 10.1016/j.expthermflusci.2015.10.01910.1016/j.expthermflusci.2015.10.019
  236. [236] Dyer, R., Naples, A., Kaemming, T., et al., 2012, “Parametric testing of a unique rotating detonation engine design.” 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 121.10.2514/6.2012-121
  237. [237] Driscoll, R., Anand, V., George, A., et al., 2015, “Investigation on RDE operation by geometric variation of the combustor annulus and nozzle exit area.” 9th US National combustion meeting.
  238. [238] Naples, A., Hoke, J., Schauer, F., 2014, “Rotating detonation engine interaction with an annular ejector.” 52nd Aerospace Sciences Meeting. 0287.10.2514/6.2014-0287
  239. [239] Schwer, D. and Kailasanath, K., 2011, “Effect of inlet on fill region and performance of rotating detonation engines.” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 6044.10.2514/6.2011-6044
  240. [240] Schwer, D., Corrigan, A., Taylor, B., et al., 2013, “On reducing feedback pressure in rotating detonation engines.” 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 1178.10.2514/6.2013-1178
  241. [241] Fotia, M., Hoke, J. and Schauer, F., 2014, “Propellant plenum dynamics in a two-dimensional rotating detonation experiment.” 52nd AIAA Aerospace Sciences Meeting. 1013.10.2514/6.2014-1013
  242. [242] Anand, V., George, A., Driscoll, R., et al., 2015, “Statistical treatment of wave instability in rotating detonation combustors.” 53rd AIAA Aerospace Sciences Meeting. 1103.10.2514/6.2015-1103
  243. [243] Pan, Z., Fan, B., Zhang, X., et al., 2011, Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame, 158(11), pp. 2220-2228. 10.1016/j.combustflame.2011.03.016.10.1016/j.combustflame.2011.03.016
  244. [244] Anand, V., George, A.S., Driscoll, R., et al., 2016, Investigation of rotating detonation combustor operation with H2-air mixtures. Int. J. Hydrogen Energy, 41(2), pp. 1281-1292. 10.1016/j.ijhydene.2015.11.041.10.1016/j.ijhydene.2015.11.041
  245. [245] Yao, S., Liu, M. and Wang, J., 2015, Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combust. Sci. Technol., 187(12), pp. 1867-1878. 10.1080/00102202.2015.1067202.10.1080/00102202.2015.1067202
  246. [246] Lin, W., Zhou, J., Liu, S., et al., 2015, Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy, 40(4), pp. 1980-1993. 10.1016/j.ijhydene.2014.11.11910.1016/j.ijhydene.2014.11.119
  247. [247] Liu, S.j., Liu, W.D., Lin, Z.Y., et al., 2014, Research on Continuous Rotating Detonation Wave Propagation Process (I): One Direction Mode. J. Propul. Technol., 35(1), pp. 138-144 (in Chinese).
  248. [248] Liu, S.j., Liu, W.D., Lin, Z.Y., et al., 2014, Research on Continuous Rotating Detonation Wave Propagation Process (II): Two-Wave Collision Propagation Mode. J. Propul. Technol., 35(2), pp. 269-275 (in Chinese).
  249. [249] Wolanski, P., 2012, “Detonative propulsion.” Proceedings of the Combustion Institute, pp. 1-34.10.1016/j.proci.2012.10.005
Language: English
Page range: 107 - 163
Published on: Dec 31, 2020
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Qiaofeng Xie, Zifei Ji, Haocheng Wen, Zhaoxin Ren, Piotr Wolanski, Bing Wang, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.