Have a personal or library account? Click to login
Numerical Modeling of the RDE Cover

References

  1. [1] Kindracki, J., Wolanski, P. and Gut, Z., 2011, “Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures,” Shock Waves, 21(2), pp. 75-84. 10.1007/s00193-011-0298-y.10.1007/s00193-011-0298-y
  2. [2] Shao, Y.-T., Liu, M. and Wang, J.-P., 2010, “Numerical Investigation of Rotating Detonation Engine Propulsive Performance,” Combustion Science and Technology, 182(11-12), pp. 1586-1597. 10.1080/00102202.2010.497316.10.1080/00102202.2010.497316
  3. [3] Yetao, S., Meng, L. and Jianping, W., 2010, “Continuous Detonation Engine and Effects of Different Types of Nozzle on Its Propulsion Performance,” Chinese Journal of Aeronautics, 23(6), pp. 647-652. 10.1016/S1000-9361(09)60266-1.10.1016/S1000-9361(09)60266-1
  4. [4] Liu, S.-J., Lin, Z.-Y., Sun, M.-B. and Liu, W.-D., 2011, “Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure,” Chinese Physics Letters, 28(9), p. 094704. 10.1088/0256-307x/28/9/094704.10.1088/0256-307X/28/9/094704
  5. [5] Liu, M., Zhou, R. and Wang, J.-P., 2011, “Three-dimensional simulation of rotating detonation engines,” presented at the IWDE, Tokyo.
  6. [6] Davidenko, D. M., Gökalp, I. and Kudryavtsev, A. N., 2007, “Numerical simulation of the continuous rotating hydrogen-oxygen detonation with a detailed chemical mechanism,” Moscow, Russia, pp. 19-22, Available: http://wehsff.imamod.ru/pages/Section6 Propulsion Physics, Airbreathing Propulsion/Kudryavtsev.pdf
  7. [7] Davidenko, D. M. et al., 2009, “Continuous detonation wave engine studies for space application,” Progress in Propulsion Physics, vol. 1, pp. 353-366. 10.1051/eucass/200901353.10.1051/eucass/200901353
  8. [8] Davidenko, D. M., Eude, Y., Gökalp, I. and Falempin, F., 2011, “Theoretical and Numerical Studies on Continuous Detonation Wave Engines,” presented at the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. 10.2514/6.2011-2334.10.2514/6.2011-2334
  9. [9] Davidenko, D. M., Gökalp, I. and Kudryavtsev, A. N., 2008, “Numerical Study of the Continuous Detonation Wave Rocket Engine,” presented at the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH. 10.2514/6.2008-2680.10.2514/6.2008-2680
  10. [10] Hayashi, A. K. et al., 2009, “Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model,” presented at the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. 10.2514/6.2009-633.10.2514/6.2009-633
  11. [11] Hishida, M., Fujiwara, T. and Wolanski, P., 2009, “Fundamentals of rotating detonations,” Shock Waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.10.1007/s00193-008-0178-2
  12. [12] Kindracki, J., Kobiera, A., Wolanski, P., Gut, Z., Folusiak, M. and Swiderski, K., 2011, “Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures,” Progress in Propulsion Physics, vol. 2, pp. 555-582. 10.1051/eucass/201102555.10.1051/eucass/201102555
  13. [13] Folusiak, M., Swiderski, K., Kobiera, A. and Wolanski, P., 2009, “Three-dimensional modeling of the Rotating Detonation Engine,” presented at the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus.
  14. [14] Yi, T.-H., Lou, J., Turangan, C., Khoo, B. C. and Wolanski, P., 2010, “Effect of Nozzle Shapes on the Performance of Continuously Rotating Detonation Engine,” presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. 10.2514/6.2010-152.10.2514/6.2010-152
  15. [15] Schwer, D. and Kailasanath, K., 2010, “Numerical Investigation of Rotating Detonation Engines,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 0 vols., American Institute of Aeronautics and Astronautics.10.2514/6.2010-6880
  16. [16] Schwer, D. and Kailasanath, K., 2012, “Feedback into Mixture Plenums in Rotating Detonation Engines,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 0 vols., American Institute of Aeronautics and Astronautics.10.2514/6.2012-617
  17. [17] Nordeen, C. A., Schwer, D., Schauer, F., Hoke, J., Barber, T. and Cetegen, B. M., 2011, “Energy Transfer in a Rotating Detonation Engine,” in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 0 vols., American Institute of Aeronautics and Astronautics.10.2514/6.2011-6045
  18. [18] Nordeen, C. A., Schwer, D., Schauer, F., Hoke, J., Barber, T. and Cetegen, B. M., 2016, “Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine,” Shock Waves, 26(4), pp. 417-428. 10.1007/s00193-015-0570-7.10.1007/s00193-015-0570-7
  19. [19] Schwer, D. and Kailasanath, K., 2013, “Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels,” Proceedings of the Combustion Institute, 34(2), pp. 1991-1998. 10.1016/j.proci.2012.05.046.10.1016/j.proci.2012.05.046
  20. [20] Wolanski, P., 2013, “Detonative propulsion,” Proceedings of the Combustion Institute, 34(1), pp. 125-158. 10.1016/j.proci.2012.10.005.10.1016/j.proci.2012.10.005
  21. [21] Wolanski, P., 2015, “Application of the Continuous Rotating Detonation to Gas Turbine,” Applied Mechanics and Materials, vol. 782, pp. 3-12, 10.4028/www.scientific.net/AMM.782.3.10.4028/www.scientific.net/AMM.782.3
  22. [22] Wolanski, P. et al., 2018, Development of Gasturbine with Detonation Chamber. In: Li, J.M., Teo, C., Khoo, B., Wang, J.P., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham, pp. 23-37. Chap. 2. 10.1007/978-3-319-68906-7_2.10.1007/978-3-319-68906-7_2
  23. [23] Swiderski, K., 2013, “Numerical modeling of the rotating detonation combustion chamber,” PhD Thesis, WUT, Warsaw.
  24. [24] Berger, M. J. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Computational Physics, 53(3), pp. 484-512. 10.1016/0021-9991(84)90073-1.10.1016/0021-9991(84)90073-1
  25. [25] Vollmer, D. B., 2003, “Adaptive mesh refinement using subdivision of Unstructured elements for conservation laws,” MSc Thesis, University of Reading.
  26. [26] Lian, Y., Hsu, K., Shao, Y., Lee, Y., Jeng, Y. and Wu, J., 2006, “Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications,” Computer Physics Communications, 175(11-12), pp. 721-737. 10.1016/j.cpc.2006.05.010.10.1016/j.cpc.2006.05.010
  27. [27] Azevedo, J. L. F. and Korzenowski, H., 2009, “An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations,” Journal of Aerospace Technology and Management, 1(2), pp. 135-152.10.5028/jatm.2009.0102135152
  28. [28] Ripley, R. C., Lien, F.-S. and Yovanovich, M. M., 2004, “Adaptive Unstructured Mesh Refinement of Supersonic Channel Flows,” International Journal of Computational Fluid Dynamics, 18(2), pp. 189-198. 10.1080/10618560310001634168.10.1080/10618560310001634168
  29. [29] Ito, K. Kunugi, T. and Ohshima, H., 2010, Development and Verification of Unstructured Adaptive Mesh Technique with Edge Compatibility, Journal of Power and Energy Systems, vol. 4, pp. 72-83. 10.1299/jpes.4.72.10.1299/jpes.4.72
  30. [30] Berger, M. J. and Colella, P., 1989, “Local adaptive mesh refinement for shock hydrodynamics,” Journal of Computational Physics, 82(1), pp. 64-84. 10.1016/0021-9991(89)90035-1.10.1016/0021-9991(89)90035-1
  31. [31] Boden, E. F., 1997, “An adaptive gridding technique for conservation laws on complex domains,” PhD thesis, Cranfield University.
  32. [32] Mavriplis, D. J., 1995, “Multigrid techniques for unstructured meshes,” NASA Contractor Report 195070, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a294610.pdf
  33. [33] Berger, M. J., 1987, “On Conservation at Grid Interfaces,” SIAM Journal on Numerical Analysis, vol. 24, p. 967. 10.1137/0724063.10.1137/0724063
  34. [34] Folusiak, M., 2013, “Development of simulation methods of rotating detonation in complex geometries,” PhD thesis, Warsaw University of Technology, Warsaw.
  35. [35] Liang, Z., Browne, S., Deiterding, R. and Shepherd, J. E., 2007, “Detonation front structure and the competition for radicals,” Proceedings of the Combustion Institute, 31(2), pp. 2445-2453. 10.1016/j.proci.2006.07.244.10.1016/j.proci.2006.07.244
  36. [36] Lu, T., Law, C. K. and Ju, Y., 2003, “Some aspects of chemical kinetics in chapman-jouguet detonation: Induction length analysis,” Journal of Propulsion and Power, 19(5), pp. 901-907.10.2514/2.6181
  37. [37] Petersen, E. L. and Hanson, R. K., 1999, “Reduced kinetics mechanisms for ram accelerator combustion,” Journal of propulsion and power, 15(4), pp. 591-600.10.2514/2.5468
  38. [38] Petersen, E. L., Davidson, D. F. and Hanson, R. K., 1999, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” Journal of Propulsion and Power, 15(1), pp. 82-91.10.2514/2.5394
  39. [39] Folusiak, M., Swiderski, K., Kobiera, A. and Wolanski, P., 2009, “Two-dimensional modeling of the rotating detonation with fuel injection,” presented at the European Conference for AeroSpace Sciences, Versailles, France.
  40. [40] Wolanski, P., 2011, “Rotating detonation wave stability,” presented at the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, University of California, Irvine, USA.
  41. [41] Eude, Y., Davidenko, D. and Izrar, B., 2011, “Simulation of continuous detonation in H2-O2 mixture using adaptive mesh refinement,” presented at the 20ème Congrès Franccais de Mécanique, France. Available: http://documents.irevues.inist.fr/handle/2042/46347.
Language: English
Page range: 13 - 47
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Michal Folusiak, Karol Swiderski, Piotr Wolanski, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.