Have a personal or library account? Click to login
Numerical Study of Detonation Processes in Rotating Detonation Engine and its Propulsive Performance Cover

Numerical Study of Detonation Processes in Rotating Detonation Engine and its Propulsive Performance

Open Access
|Oct 2020

References

  1. [1] Press, O., 2007, “Asia Pacific’s aviation industry remains buoyant as 85 million seats go on sale,” www.oag.com.
  2. [2] Sehra, A. K. and Whitlow, W., 2004, “Propulsion and power for 21st century aviation,” Progress in Aerospace Sciences, vol. 40, pp. 199-235.10.1016/j.paerosci.2004.06.003
  3. [3] Bussing, T. and Pappas, G., 1994, “An introduction to pulse detonation engines,” AIAA 1994-0263, https://doi.org/10.2514/6.1994-263.10.2514/6.1994-263
  4. [4] Roy, G. D., Frolov, S. m., Borisov, A. A., and Netzer, D. W., 2004, “Pulse detonation propulsion: challenges, current status and future perspective,” Progress in Energy and Combustion Science, vol. 30, pp. 545-672.10.1016/j.pecs.2004.05.001
  5. [5] Wolanski, P., Kindracki, J., and Fujiwara, T., 2006, “An experimental study of small rotating detonation engines,” Pulsed and Continuous Detonation Ed., edited by Roy, G. D., Frolov, S. m., and Siniball, J., Torus Press, pp. 332-338.
  6. [6] Wolanski, P., 2010, “Development of the continuous rotating detonation engines,” Progress in Pulsed and Continuous Detonations, edited by Roy, G. D. and Frolov, S. m., moscow, Torus Press, pp. 395-406.
  7. [7] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F., 2006, “Continuous spin detonations,” Journal of Propulsion and Power, vol. 22(6), pp. 1204-1216.10.2514/1.17656
  8. [8] lu, F. K. and Braun, E. m., 2014, “Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts,” Journal of Propulsion and Power, vol. 30, pp. 1125-1142, https://doi.org/10.2514/1.B34802.10.2514/1.B34802
  9. [9] Voitsekhovskii, B. V., 1960, “Stationary spin detonation,” Soviet Journal of Applied mechanics and Technical Physics, vol. 3, pp. 157-164.
  10. [10] Nicholls, J. A., Cullen, R. E., and Raglano, K. W., 1966, “Feasibility studies of a rotating detonation wave rocket motor,” Journal of Spacecraft, vol. 3, no. 6, pp. 893-898.10.2514/3.28557
  11. [11] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F., 2008, “Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors,” Combustion, Explosion, and Shock Waves, vol. 44, pp. 150-162.10.1007/s10573-008-0021-1
  12. [12] Daniau, E., Falempin, F., and Zhdan, S., 2005, “Pulsed and rotating detonation propulsion systems: first step towards operational engines,” AIAA 2005-3233, https://doi.org/10.2514/6.2005-3233.10.2514/6.2005-3233
  13. [13] Falempin, F. and Daniau, E., 2008, “A contribution to the development of actual continuous detonation wave engine,” AIAA 2008-2679, https://doi.org/10.2514/6.2008-2679.10.2514/6.2008-2679
  14. [14] Zhdan, S. A., Bykovskii, F. A., and Vedernikov, E. F., 2007, “mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture,” Combustion, Explosion, and Shock Waves, Vol. 43, No. 4, pp. 449-459.10.1007/s10573-007-0061-y
  15. [15] Yi, T.-H., lou, J., Turangan, C. and Choi, J.-Y., and Wolanski, P., 2011, “Propulsive performance of a continuously rotating detonation engine,” Journal of Propulsion and Power, vol. 27, pp. 171-181, https://doi.org/10.2514/1.46686.10.2514/1.46686
  16. [16] Smith, G. P., Golden, D. m., Frenklach, m., moriarty, N. W., Eiteneer, B. et al., GRI-mech 3.0, http://combustion.berkeley.edu/gri-mech/
  17. [17] Yi, T.-H., lu, F. K., Wilson, D. R, Emanuel, G., 2017, “Numerical study of detonation wave propagation in a confined supersonic flow,” Shock Waves, vol. 27, pp. 395-408, https://doi.org/10.1007/s00193-016-0666-8.10.1007/s00193-016-0666-8
  18. [18] Yi, T.-H., Anderson, D. A., Wilson, D. R., lu, F. K., 2005, “Numerical study of two-dimensional viscous, chemically reacting flow,” AIAA 2005-4868, https://doi.org/10.2514/6.2005-4868.10.2514/6.2005-4868
  19. [19] macNeice, P., Olson, K. m., mobarry, C., deFainchtein, R., and Packer, C., 2000, “PARAmESH: A parallel adaptive mesh refinement community toolkit,” Computer Physics Communications, vol. 126(3), pp. 330-354, https://doi.org/10.1016/S0010-4655(99)00501-9.10.1016/S0010-4655(99)00501-9
  20. [20] leveque, R. J., 2002, Finite Volume methods for Hyperbolic Problems, Cambridge University Press.10.1017/CBO9780511791253
  21. [21] Roe, P. l., 1981, “Approximate Riemann solvers, parameter vectors and difference schemes,” Journal of Computational Physics, vol. 43, pp. 357-372.10.1016/0021-9991(81)90128-5
  22. [22] van leer, B., 1979, “Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method,” Journal of Computational Physics, vol. 32, pp. 101-136.10.1016/0021-9991(79)90145-1
  23. [23] Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid mechanics and Heat Transfer. Taylor and Francis, Washington, D. C.
  24. [24] Williams, D. N., 2002, Numerical modelling of multidimensional Detonation Structure, Ph.D. thesis, University of Calgary, Calgary, Alberta.
  25. [25] Brown, P. N., Byrne, G. D., and Hindmarsh, A.C., 1989, “VODE: A variable-coefficient ode solver, SIAm Journal on Scientific and Statistical Computing, vol. 10, pp. 1038-1051.10.1137/0910062
  26. [26] Berger, m. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Computational Physics, vol. 53, pp. 484-512.10.1016/0021-9991(84)90073-1
  27. [27] lee, J. H. S., 2008, The Detonation Phenomenon, Cambridge Univ. Press, New York.10.1017/CBO9780511754708
  28. [28] Gordon, S. and mcBride, B. J., 1976, “Computer program for calculation of complex chemical equilibrium compositions and application I. Analysis,” Tech. Rep. NASA RP-1311.
  29. [29] ma, F., Choi, J. Y., and Yang, V., 2005, “Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines,” Journal of Propulsion and Power, Vol. 21, No. 3, pp. 512-526, https://doi.org/10.2514/1.7393.10.2514/1.7393
  30. [30] Yi, T.-H., Turangan, C., lou, J., Wolanski, P., Kindracki, J., 2009, “A three-dimensional numerical study of rotational detonation in an annular chamber,” AIAA paper 2009-0634, https://doi.org/10.2514/6.2009-634.10.2514/6.2009-634
Language: English
Page range: 30 - 48
Published on: Oct 23, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Tae-Hyeong Yi, Jing Lou, Cary Kenny Turangan, Piotr Wolanski, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.