Have a personal or library account? Click to login
An Unmanned Aircraft Model for Control System Reconfiguration Analysis and Synthesis Cover

An Unmanned Aircraft Model for Control System Reconfiguration Analysis and Synthesis

Open Access
|May 2019

Abstract

Reliability of unmanned aircraft is a decisive factor for conducting air tasks in a controlled airspace. One of the means of improving unmanned aircraft reliability is reconfiguration of the control system, which will allow to maintain control over the aircraft despite an occurring failure. The control system is reconfigured by using still operational control surfaces to compensate for failure consequences and to control the damaged aircraft. Development of effective reconfiguration algorithms involves utilization of a non-linear model of unmanned aircraft dynamics, in which each control surface deflection can be controlled independently.

The paper describes a non-linear model of a small unmanned aircraft with decoupled control surfaces. The paper discusses aircraft flight dynamics equations and estimated equations for controllability derivatives for each control surface, the results of comparison tests of the model and actual aircraft as well as the structure of the simulation model. The developed unmanned aircraft model may be used in development and in optimization of control algorithms for aircraft with damaged control systems as well as to test the impact of failures on dynamic properties of the aircraft.

Language: English
Page range: 97 - 116
Published on: May 31, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marcin Żugaj, Przemysław Bibik, Marcin Figat, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.