Have a personal or library account? Click to login
Various Convexities and Some Relevant Properties of Consumer Preference Relations Cover

Various Convexities and Some Relevant Properties of Consumer Preference Relations

Open Access
|Oct 2023

References

  1. Alonso, S., Herrera-Viedma, E., Chiclana, F., Herrera, F. (2010), A web-based consensus support system for group decision-making problems and incomplete preferences, Information Science, 180(23), 4477-4495.
  2. Aumann, R. (1962), Utility Theory without the Completeness Axiom, Econometrica, 30, 445-462.
  3. Bewley, T. (1986), Knightian Uncertainty Theory: Part I,” Cowles Foundation Discussion Paper No. 807.
  4. Brandl, F., Brandt, F. (2020), Arrovian aggregation of convex preferences, Econometrica, 88(2), 799-844.
  5. Cardin, M. (2019), Convex preferences as aggregation of orderings. Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology, vol. 1, 792-796.
  6. Cardin, M. (2022), Convex preferences: An abstract approach, Fuzzy Sets and Systems, 446, 233-242.
  7. Cettolin, E., Riedl, A. (2019), Revealed preferences under uncertainty: Incomplete preferences and preferences for randomization, Journal of Economic Theory, 181(May), 547-585.
  8. Chateauneuf, A., Tallon, J.M. (2002), Diversification, convex preferences, and nonempty core in the Choquet expected utility model, Economic Theory, 19(3), 509-523.
  9. Debreu, G. (1959), Theory of Value: An Axiomatic Analysis of Economic Equilibrium, New Haven and London: Yale University Press.
  10. Dubra, J., Ok, E.A. (2002), A model of procedural decision making in the presence of risk, International Economic Review, 43(4), 1053-1080.
  11. Forrest, J.YL. (2013), A Systemic Perspective on Cognition and Mathematics, Balkema, The Netherlands: CRC Press, an imprint of Taylor and Francis.
  12. Halevy, Y., Persitz, D., Zrill, L. (2017), Non-parametric bounds for non-convex preferences, Journal of Economic Behavior & oOrganization, 137(May), 105-112.
  13. Hervés-Beloso, C., Cruces, H.V. (2019), Continuous preference orderings representable by utility functions, Journal of Economic Surveys, 33(1), 179-194.
  14. Hu, K., Tao, Y., Ma, Y., Shi, L. (2021), Peer pressure induced punishment resolves social dilemma on interdependent networks, Scientific Reports, 11, 15792.
  15. Jehle, G., Reny, P. (2000), Advanced Microeconomic Theory (3rd edition). Pearson.
  16. Kubis, W. (1999), Abstract convex structures in topology and set theory. Ph.D. thesis, University of Silesia, Katowice, Poland.
  17. Kuratowski, K., Mostowski, A. (1976), Set Theory: With an Introduction to Descriptive Set Theory. Amsterdam: North-Holland.
  18. Levin, J., Milgrom, P. (2004), Consumer theory. https://web.stanford.edu/~jdlevin/Econ%20202/Consumer%20Theory.pdf, accessed February 07, 2022.
  19. Lin, Y. (guest editor), (2008), Systematic Studies: The Infinity Problem in Modern Mathematics, Kybernetes: The International Journal of Cybernetics, Systems and Management Sciences, 37(3-4), 385-542.
  20. Mandler, M. (1999), Incomplete Preferences and Rational Intransitivity of Choice, mimeo, Harvard University.
  21. Mani, A., Rahwan, I., Pentland, A. (2013), Inducing peer pressure to promote cooperation, Scientific Report, 3, 01735.
  22. Mas-Collel, A., Whinston, M.D., Green, J.R. (1995), Microeconomic Theory. New York, NY.: Oxford University Press.
  23. Meng, F.Y., Chen, X.H. (2015), A new method for group decision making with incomplete fuzzy preference relations, Knowledge-Based Systems, 73(January), 111-123.
  24. Miller, N.H. (2006), Notes on Microeconomic Theory. https://nmiller.web.illinois.edu/notes.html, accessed July 11, 2022.
  25. Ok, E.A. (2002), Utility Representation of an Incomplete Preference Relation, Journal of Economic Theory, 104(2), 429-449.
  26. Pancs, R. (2018), Lectures on Microeconomics: The Big Questions Approach. Cambridge, MA: The MIT Press.
  27. Silberger, E. (2000), The Structure of Economics: A Mathematical Analysis (3rd edition). Irwin McGraw Hill.
  28. Simon, C.P., Blume, L.E. (1994), Mathematics for Economists. W.W. Norton & Company.
  29. van de Vel, M.L.J. (1993), Theory of Convex Structures, North-Holland Mathematical Library, vol. 50, Elsevier, Amsterdam.
DOI: https://doi.org/10.2478/sues-2023-0021 | Journal eISSN: 2285-3065 | Journal ISSN: 1584-2339
Language: English
Page range: 145 - 168
Submitted on: Oct 1, 2022
|
Accepted on: Jan 1, 2023
|
Published on: Oct 6, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jeffrey Yi-Lin Forrest, Tufan Tiglioglu, Yong Liu, Donald Mong, Marta Cardin, published by Vasile Goldis Western University of Arad
This work is licensed under the Creative Commons Attribution 4.0 License.