Mohammed, M. R., (2018). Behavior of RPC hemispherical dome concentrically loaded. The 1st National Conference on Civil and Architectural Engineering 26-28.
Dineshkumar, R. & Ramkumar, S. (2019). Review paper on fatigue behavior of reinforced concrete beams. Materials Today: Proceedings, <a href="https://doi.org/10.1016/j.matpr.2019.05.353." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matpr.2019.05.353.</a>
Catalin, G., Pierre, L. & Jean, P. (2007). Response of CFRP-strengthened beams under fatigue with different load amplitudes. Construction and Building Materials, 21(4), pp. 756-763.
Suryanto, B. & Staniforth, G. (2019). Monitoring the Shear Fatigue Response of Reinforced Concrete Beams Subjected to Moving Loads using Digital Image Correlation. Civil Engineering Dimension, 21(1), March 2019, 6 – 12. DOI: <a href="https://doi.org/10.9744/CED.21.1.6-12." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.9744/CED.21.1.6-12.</a>
Purnomo, J. Octaviani, V. Chiaulina, P. K. & Chandra, J. (2020). Evaluation of a Macro Lump Plasticity Model for Reinforced Concrete Beam-Column Joint under Cyclic Loading. Civil Engineering Dimension, 22(2), September 2020, 82 – 93. DOI: <a href="https://doi.org/10.9744/CED.22.2.82-." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.9744/CED.22.2.82-.</a>
Ehab, H. Mark, A. Bradford, R. & Ian, G. (2010). Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution, International Journal of Solids and Structures, 47, 204–215. <a href="https://doi.org/10.1016/j.ijsolstr.2009.09.027." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijsolstr.2009.09.027.</a>
Findley, MN. (1959). A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Journal of Engineering for Industry.
Dang Van, K. (1993). Macro-Micro Approach in high-cycle Multiaxial Fatigue. Advances in Multiaxial Fatigue. ASTM STP I191. D. L. McDowell and R. Ellis, EDS., American Society for Testing and Materials, Philadelphia.
Bianzeube, T., Nadjitonon, N., Djonglibet, W-D. & Jean-Louis, R. (2018). Multiaxial fatigue criteria based on an integral approach: justification of the superiority of this approach over the critical plane approach. International Journal of Current Research, 10 (1), pp. 63910-63917.
Logzit, N. & Kebiche, K. (2020). Numerical Model for High Relative Capacity of Tensegrity Cable Domes. Civil Engineering Dimension, 22(1). DOI: <a href="https://doi.org/10.9744/CED.22.1.29-36." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.9744/CED.22.1.29-36.</a>
DTRF, (2021). Cahier des clauses techniques générales applicables aux marchés publics de travaux de génie civil, Fascicule 74 : Construction des réservoirs en béton et réhabilitation des réservoirs en béton ou en maçonnerie. Version 4.01.