Meier C., C. Boley & Y. Zou. (2008).Collapse and deformation behaviour of alluvial loess soils from Afghanistan. in Geotechnics of Soft Soils: Focus on Ground Improvement: Proceedings of the 2nd International Workshop held in Glasgow, Scotland, 3-5 September 2008. CRC Press.
Houston S.L., W.N. Houston & D.J. Spadola. (1988). Prediction of field collapse of soils due to wetting. Journal of Geotechnical Engineering. 114 (1): p. 40-58.
Cui Y.-J., J.-M. Terpereau, D. Marcial, P. Delage, P. Antoine, G. Marchadier & W.-M. Ye. (2004). A geological and geotechnical characterisation of the loess of Northern France. in Advances in geotechnical engineering: The Skempton conference: Proceedings of a three day conference on advances in geotechnical engineering, organised by the Institution of Civil Engineers and held at the Royal Geographical Society, London, UK, on 29–31 March 2004. Thomas Telford Publishing.
Gu L., Q. Lv, S. Wang, J. Xiang, L. Guo & J. Jiang. (2021). Effect of sodium silicate on the properties of loess stabilized with alkali-activated fly ash-based. Construction and Building Materials. 280: p. 122515. <a href="https://doi.org/10.1016/j.conbuildmat.2021.122515." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2021.122515.</a>
Li G.-y., X. Hou, Y.-h. Mu, W. Ma, F. Wang, Y. Zhou & Y.-c. Mao. (2019). Engineering properties of loess stabilized by a type of eco-material, calcium lignosulfonate. Arabian Journal of Geosciences. 12 (22): p. 700. <a href="https://doi.org/10.1007/s12517-019-4876-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12517-019-4876-0.</a>
Yifei H., P. Li & W. D. (2021). Review of chemical stabilizing agents for improving the physical and mechanical properties of loess. Bulletin of Engineering Geology and the Environment. 80. <a href="https://doi.org/10.1007/s10064-021-02486-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10064-021-02486-x.</a>
Bell F. and I.d. Bruyn. (1997). Sensitive, expansive, dispersive and collapsive soils. Bulletin of the International Association of Engineering Geology, (56): p. 19-38.
Bahloul O., K. Abbeche & A. Bahloul. (2016). Study of the microstructure of collapsible soil treated with the potassium chloride. Journal of Applied Engineering Science & Technology, (1): p. 39-42%V 2.
Ziani H., K. Abbèche, I. Messaoudene & L.J. Andrade Pais. (2019) .Treatment of Collapsible Soils by Additions of Granulated Slag and Natural Pozzolan. KSCE Journal of Civil Engineering. 23 (3): p. 1028-1042. <a href="https://doi.org/10.1007/s12205-019-0051-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12205-019-0051-0.</a>
Bellil S., K. Abbeche & O. Bahloul. (2018). Treatment of a collapsible soil using a bentonite– cement mixture. Studia Geotechnica et Mechanica. 40 (4): p. 233-243. doi:<a href="https://doi.org/10.2478/sgem-2018-0042." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/sgem-2018-0042.</a>
Abbeche K., O. Bahloul, T. Ayadat & A. Bahloul. (2010). Treatment of collapsible soils by salts using the double consolidation method, in Experimental and Applied Modeling of Unsaturated Soils2010. p. 69-78.
Abbeche K., O. Bahloul & A. Bahloul. (2016).Study of the influence of the saline solution NaCl on the potential collapse of soil. E3S Web Conf. 9: p. 07001.
Bahloul O., K. Abbeche, A. Bahloul & A. Halitim. (2018). EFFECT OF SODIUM CHLORIDE ON THE WETTING INDUCED COLLAPSE STRAIN OF SOILS. Malaysian Journal of Civil Engineering. 26 (2). <a href="https://doi.org/10.11113/mjce.v26.15881." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11113/mjce.v26.15881.</a>
Siddiqua S. and A. Bigdeli. (2022). Utilization of MgCl2 solution to control collapse potential of soil. Transportation Geotechnics. 33: p. 100731. <a href="https://doi.org/10.1016/j.trgeo.2022.100731." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.trgeo.2022.100731.</a>
NF P94-051, Determination of Atterberg’s limits. Liquid limit test using Casagrande apparatus. Plastic limit test on rolled thread., 1993, AFNOR: Paris, France.
Muñoz-Castelblanco J., J.-M. Pereira, P. Delage & Y. Cui. (2012). The Influence of Changes in Water Content on the Electrical Resistivity of a Natural Unsaturated Loess. Geotechnical Testing Journal. 35: p. 103587. <a href="https://doi.org/10.1520/gtj103587." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1520/gtj103587.</a>
Jennings J. (1957). The additional settlement of foundations due to a collapse of structure of sandy subsoils on wetting. in Proc. 4th Int. Conf. on SMFE.
Jennings J. and K. Knight. (1975). A guide to construction on or with materials exhibiting additional settlement due to “collapse” of grain structure: Sixth Regional Conference for Africa on Soil Mechanics and Foundation Engineering. Durban, South Africa: p. 99-104.
Beketov A.K. and A.F. Seleznev. (1971). Nature of the deformation and failure of silicate-stabilized loess. Soil Mechanics and Foundation Engineering. 8 (6): p. 408-410. <a href="https://doi.org/10.1007/bf01705220." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/bf01705220.</a>