Have a personal or library account? Click to login
Impact of Passive Design Strategies on Environment, Cooling and Lighting Energy Demand. A Weighted Least Squares-Based Approach Cover

Impact of Passive Design Strategies on Environment, Cooling and Lighting Energy Demand. A Weighted Least Squares-Based Approach

Open Access
|Dec 2023

References

  1. Rogers, R. G., & Gumuchdjian, P. (2008). Des Villes durables pour une petite planète. Moniteur.
  2. Fathi, S., et al. (2020). Machine learning applications in urban building energy performance forecasting: A systematic review. Renewable and Sustainable Energy Reviews, 133, 110287.
  3. APRUE. (2021). L’Agence Nationale pour la Promotion et la Rationalisation de l’Utilisation de l’Énergie, La situation énergétique nationale, Chiffre 2019, édition 2019.
  4. Guillemot, H. (2020). 2 degrés, 1.5 degrés, neutralité carbone… Petite histoire des objectifs climatiques à long terme.
  5. Sénit, C. A. (2008). L’efficacité énergétique dans le secteur résidentiel: une analyse des politiques des pays du Sud et de l’Est de la Méditerranée. IIddri, Idées pour le débat, 14.
  6. APRUE & GIZ. (2016). Guide pour une construction Eco-énergétique en Algérie.
  7. Boukarta, S. (2021). Potentiel d’économie d’énergie d’un bâtiment résidentiel. In Confort, Habitat en milieu sensible et Ville Résiliente CHSVR, 13-14 octobre, Université de Guelma.
  8. Salat, S. (2011). Les villes et les formesurbaines: sur l’urbanisme durable. France.
  9. Bozzonnet, E. (2005). Impact des microclimats urbains sur la demande énergétique des bâtiments-Cas de la rue canyon. Diss. Université de la Rochelle.
  10. Wong, N.H., et al. (2011). Evaluation of the impact of the surrounding urban morphology on building energy consumption. Solar energy, 85(1). pp. 57-71.
  11. Dascalaki, E. G., Droutsa, K., Gaglia, A. G., Kontoyiannidis, S., & Balaras, C. A. (2010). Data collection and analysis of the building stock and its energy performance—An example for Hellenic buildings. Energy and Buildings, 42(8), 1231-1237.
  12. Boukarta, S., & Berezowska-Azzag, E. (2018). Energy demand of occupant’s spatial modification in residential buildings. Case study of Médéa, Algeria. Selected Scientific Papers-Journal of Civil Engineering, 13(1), pp. 15-28.
  13. Dall’O’, G., Galante, A., & Torri, M., (2012). A methodology for the energy performance classification of residential building stock on an urban scale. Energy and Buildings, 48 (2012) 211–219.
  14. Boukarta, S. (2021). Exploring the impact of balconies on cooling energy demand in an arid climate zone. Selected Scientific Papers-Journal of Civil Engineering, 16(2), 25-35.
  15. Boukarta, S. (2021). Predicting energy demand of residential buildings: A linear regression-based approach for a small sample size. Selected Scientific Papers-Journal of Civil Engineering, 16(2), 67-85.
  16. Amiri, S.S., Mottahedi, M., & Asadi, S. (2015). Using multiple regression analysis to develop energy consumption indicators for commercial buildings in the US. Energy and Buildings, 109, 209-216.
  17. Semahi, S., Zemmouri, N., Singh, M.K., et al. (2019). Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Building and Environment, 161, p. 106271.
  18. Kaoula, D., & Bouchair, A. (2019). The pinpointing of the most prominent parameters on the energy performance for optimal passive strategies in ecological buildings based on bioclimatic, sensitivity and uncertainty analyses. International Journal of Ambient Energy, 1-28.
DOI: https://doi.org/10.2478/sspjce-2023-0010 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Published on: Dec 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Soufiane Boukarta, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.