Have a personal or library account? Click to login
On the Assessment of Actual Compressive Strength of Concrete in Reinforced Columns: Influence of Core Diameter and Slenderness Ratio Cover

On the Assessment of Actual Compressive Strength of Concrete in Reinforced Columns: Influence of Core Diameter and Slenderness Ratio

Open Access
|Dec 2023

References

  1. Kumpyak, O.G., Galyautdinov, Z.R., & Kokorin, D.N. (2016). Strength of concrete structures under dynamic loading., vol. 070006, no. 2016, doi: <a href="https://doi.org/10.1063/1.4937876." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.4937876.</a>
  2. Fedorova, N.V., Medyankin, M., & Fedorov, S.S. (2021). Strength of heavy concrete during static-dynamic deformation. IOP Conference Series: Materials Science and Engineering, 1030. doi: <a href="https://doi.org/10.1088/1757-899X/1030/1/012046." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1757-899X/1030/1/012046.</a>
  3. Mailyan, L.R., Beskopylny, A.N., Meskhi, B., Shilov, A.V., Stel’makh, S.A., Shcherban’, E.M., Smolyanichenko, A.S., & El’shaeva, D. (2021). Improving the Structural Characteristics of Heavy Concrete by Combined Disperse Reinforcement. Applied Sciences.
  4. Swamy, R. (2008). Sustainable Concrete for the 21st Century Concept of Strength through Durability. R Narayan Swamy University of Sheffield, England,” Japan Soc. Civ. Eng. Concr. Comm. Newsl., 2008, [Online]. Available: http://eprints.whiterose.ac.uk/4617/.
  5. Pucinotti, R., & Tripodo, M. (2009). The Fiumarella bridge: concrete characterisation and deterioration assessment by nondestructive testing. International Journal of Microstructure and Materials Properties, 4, 128-139., doi: <a href="https://doi.org/10.1504/IJMMP.2009.028438." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJMMP.2009.028438.</a>
  6. Stefano, M.D., Tanganelli, M., & Viti, S. (2013). On the variability of concrete strength as a source of irregularity in elevation for existing RC buildings: a case study. Bulletin of Earthquake Engineering, 11, 1711-1726. doi: <a href="https://doi.org/10.1007/s10518-013-9463-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10518-013-9463-2.</a>
  7. Bartlett FM and MacGregor JG. Effect of core diameter on concrete core strengths. ACI Materials Journal. 1994, 91(4), pp 339-348.
  8. ASTM 900-06, “Standard test method for pullout strenght of hardened concrete,” Am. Soc. Test. Mater., no. July 1999, pp. 1–10, 2013.
  9. Bickley, J. A. (1981). Pullout Testing of Concrete. Concr. Constr. - World Concr., vol. 26, no. 7.
  10. Breysse, D. et al., (2019). Recommendation of RILEM TC249-ISC on non destructive in situ strength assessment of concrete. Mater. Struct. Constr., vol. 52, no. 4, pp. 1–21, doi: <a href="https://doi.org/10.1617/s11527-019-1369-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1617/s11527-019-1369-2.</a>
  11. Yan, J., Liu, K., Zou, C., Mo, Y., & Ou, J. (2020). Comparison of Evaluation Tests for Compressive Strength of Structural Concrete. Period. Polytech. Civ. Eng., vol. 64, no. 2, pp. 387–395, 2020, doi: <a href="https://doi.org/10.3311/PPci.12545." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3311/PPci.12545.</a>
  12. Qasrawi, H. (2019). Effect of the position of core on the strength of concrete of columns in existing structures, Journal of Building Engineering, vol. 25, 100812, 2019, <a href="https://doi.org/10.1016/j.jobe.2019.100812" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jobe.2019.100812</a>
  13. NF EN 13791 Standard, “Assessment of in-situ compressive strength in structures and precast concrete components,” August, 2019.
  14. Khoury, S.S., Aliabdo, A.A., & Ghazy, A. (2014). Reliability of core test – Critical assessment and proposed new approach. alexandria engineering journal, 53, 169-184., doi: <a href="https://doi.org/10.1016/j.aej.2013.12.005." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aej.2013.12.005.</a>
  15. Masi, A. & Vona, M. (2009). Estimation of the in-situ concrete strength: provisions of the european and italian seismic codes and possible improvements, RELUIS - Eurocode 8 Perspect. from Ital. Standpoint Work., no. May 2014, pp. 67–77, 2009.
  16. ACI 214.4R-10, “Guide for Obtaining Cores and Interpreting Compressive Strength Results” American Concrete Institute 38800 Country Club Drive Farmington Hills, MI 48331 U.S.A. 2010.
  17. Carroll, A.C., Grubbs, A.R., Schindler, A.K., & Barnes, R.W. (2016). Effect of core geometry and size on concrete compressive strength. (Research Report No. 1 for ALDOT Project 930-828),” no. 1, pp. 1–136.
  18. Suprenant, B. A. (1995). Core Strength Variation of in-Place Concrete. The Aberdeen Group; Boston, MA, USA.
  19. Bartlett, F.M., & Macgregor, J.G. (1999). Variation of In-Place Concrete Strength in Structures. ACI Materials Journal. vol. 96, Issue 2, pp 261-270, 1999.
  20. de Stefano, M., Tanganelli, M., & Viti, S. (2013). Effect of the variability in plan of concrete mechanical properties on the seismic response of existing RC framed structures. Bulletin of Earthquake Engineering, 11, 1049-1060. doi: <a href="https://doi.org/10.1007/s10518-012-9412-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10518-012-9412-5.</a>
  21. NF EN 12390-2 Standard, “Testing hardened concrete-Part 2 : making and curing specimens for strength tests,” June, 2019.
  22. NF EN 12390-3, “Testing hardened concrete - Part 3 : compressive strength for test specimens,” June, 2019.
  23. NF EN 12504-4 Standard, “Testing concrete in structures- Part 4 : Determination of ultrasonic velocity” July, 2021.
  24. NA 17004, norme algérienne“ Evaluation de la résistance à la compression sur site des structures et les éléments préfabriqués en béton,” 2008.
  25. NF EN 13791 Standard, “Assessment of in-situ compressive strength in structures and precast concrete components,” September, 2007.
  26. Benidir, A. (2018).Aggregate size and lateral dimension effects on core compressive strength of concrete, Proc. IRF2018 6th Int. Conf. Integrity-Reliability-Failure, no. July, pp. 479–486, 2018.
  27. Kou, S., Poon, C.S., & Wan, H. (2012). Properties of concrete prepared with low-grade recycled aggregates. Construction and Building Materials, 36, 881-889.,doi: <a href="https://doi.org/10.1016/j.conbuildmat.2012.06.060." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2012.06.060.</a>
  28. Mohammed, T.U., & Rahman, N. (2016). Effect of types of aggregate and sand-to-aggregate volume ratio on UPV in concrete. Construction and Building Materials, 125, 832-841. doi: <a href="https://doi.org/10.1016/j.conbuildmat.2016.08.102." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2016.08.102.</a>
DOI: https://doi.org/10.2478/sspjce-2023-0009 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Published on: Dec 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Adel Benidir, Said Debbakh, Siham Chaibeddra, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.