Have a personal or library account? Click to login
Evaluation of Recycled Brick Waste Aggregates as a Sustainable Substitute in Cement Treated Base Cover

Evaluation of Recycled Brick Waste Aggregates as a Sustainable Substitute in Cement Treated Base

Open Access
|Dec 2023

References

  1. Zheng, L., Wu, H., Zhang, H., Duan, H., Wang, J., Jiang, W., Dong, B., Liu, G., Zuo, J., & Song, Q. (2017). Characterizing the generation and flows of construction and demolition waste in China. Construction and Building Materials, 136, 405-413 <a href="https://doi.org/10.1016/j.conbuildmat.2017.01.055." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2017.01.055.</a>
  2. Mezhoud, S., & Houari, H. (2017). Valorisation des fraisât routiers et produits de démolition pour la fabrication de mélanges granulaires traites aux liants hydraulique. Algerian Journal of Environmental Science and Technology 3(3).
  3. Christen, H., van Zijl, G., & de Villiers, W. (2022). The Incorporation of Recycled Brick Aggregate in 3D Printed Concrete. Cleaner Materials. <a href="https://doi.org/10.1016/j.clema.2022.100090." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clema.2022.100090.</a>
  4. Hou, Y., Ji, X., Zou, L., Liu, S., & Su, X. (2016). Performance of cement-stabilised crushed brick aggregates in asphalt pavement base and subbase applications. Road Materials and Pavement Design, 17, 120 - 135. <a href="https://doi.org/10.1080/14680629.2015.1064466." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/14680629.2015.1064466.</a>
  5. Poon, C.S., & Chan, D. (2006). Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials, 20, 578-585. <a href="https://doi.org/10.1016/j.conbuildmat.2005.01.045." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2005.01.045.</a>
  6. Cavalline, T.L. (2012). Recycled brick masonry aggregate concrete: Use of recycled aggregates from demolished brick masonry construction in structural and pavement grade portland cement concrete.
  7. Dang, J., Zhao, J., Pang, S.D., & Zhao, S.B. (2020). Durability and microstructural properties of concrete with recycled brick as fine aggregates. Construction and Building Materials, 262, 120032. <a href="https://doi.org/10.1016/j.conbuildmat.2020.120032." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.120032.</a>
  8. Atyia, M.M., Mahdy, M.G., & Elrahman, M.A. (2021). Production and properties of lightweight concrete incorporating recycled waste crushed clay bricks. Construction and Building Materials, 304, 124655.
  9. Tavakoli, D., Fakharian, P., de Brito, J. (2022). Mechanical properties of roller-compacted concrete pavement containing recycled brick aggregates and silica fume. Road Materials and Pavement Design 23(8), 1793-1814. <a href="https://doi.org/10.1080/14680629.2021.1924236." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/14680629.2021.1924236.</a>
  10. Dang, J., Xiao,J., Duan, Z. (2022). Effect of pore structure and morphological characteristics of recycled fine aggregates from clay bricks on mechanical properties of concrete. Construction and Building Materials 358, 129455. <a href="https://doi.org/10.1016/j.conbuildmat.2022.129455." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2022.129455.</a>
  11. Helmy, S.H., Tahwia, A.M., Mahdy, M.G., & Elrahman, M.A. (2023). Development and characterization of sustainable concrete incorporating a high volume of industrial waste materials. Construction and Building Materials.
  12. Sharma, A., Shrivastava, N. (2022). Geotechnical assessment and large scale direct shear testing on recycled brick aggregates. Materials Today: Proceedings 65, 815-823. <a href="https://doi.org/10.1016/j.matpr.2022.03.318." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matpr.2022.03.318.</a>
  13. Wu, J.,Guo, Y.,Shen, A., Dai, Xi., Li, Q., and Ren, G., and Liang, Tianyu (2023), Research on the Performance of Cement Stabilized Recycled Brick Concrete Aggregate Mixtures Made from Construction and Demolition Waste Based on Graded Replacement Plans. Available at SSRN: https://ssrn.com/abstract=4387411 or http://dx.doi.org/<a href="https://doi.org/10.2139/ssrn.4387411" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2139/ssrn.4387411</a>
  14. AFNOR: NF EN 14227-1. Mélanges traités aux liants hydrauliques-Partie 1: Mélanges granulaires traités au ciment, (2005).
  15. Soil, A.C.D.-o. and Rock, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 Ft-Lbf/Ft3 (2,700 KN-M/M3)) 12009: ASTM international.
  16. EN, T., 196-1 (equivalence EN 196-1): Methods of Testing Cement—Part 1: Determination of Strength. Turkish Standards Institution, Ankara, TURKEY, 2002. 24.
  17. NF, P., P 18-459, Béton-Essai pour béton durci-Essai de porosité et de masse volumique. Mars, 2010.
  18. ASTM., Standard test method for density, absorption, and voids in hardened concrete. C642-13, West Conshohocken, PA. 2013.
  19. EN, 993-15, Test methods for dense shaped refractory products Part 15: Determination of thermal conductivity by the hot (parallel) wire method. 2006.
  20. ASTM, Standard test method for determining potential resistance to degradation of pervious concrete by impact and abrasion, 2013, ASTM C1747/C1747M.
  21. Kasinikota, P., Tripura, D.D. (2021). Evaluation of compressed stabilized earth block properties using crushed brick waste. Construction and Building Materials 280, 122520. <a href="https://doi.org/10.1016/j.conbuildmat.2021.122520." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2021.122520.</a>
  22. Sharma, A., Shrivastava, N., Lohar, J. (2023). Assessment of Geotechnical and Geoenvironmental Behaviour of Recycled Concrete Aggregates, Recycled Brick Aggregates and Their Blends. Cleaner Materials 7, 100171. <a href="https://doi.org/10.1016/j.clema.2023.100171." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clema.2023.100171.</a>
  23. Debieb, F., Kenai, S. (2008). The use of coarse and fine crushed bricks as aggregate in concrete. Construction and building materials 22(5), 886-893. <a href="https://doi.org/10.1016/j.conbuildmat.2006.12.013." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2006.12.013.</a>
  24. Halsted, G.E., D.R. Luhr, and W.S. Adaska, Guide to cement-treated base (CTB)2006.
  25. Bwayo, E., Obwoya, S.K. (2014). Thermal Conductivity of insulation brick developed from sawdust and selected Uganda clays. International journal of research in Engineering and Technology 3(9), 282-285.
  26. Dang, J. Zhao, J. (2019). Influence of waste clay bricks as fine aggregate on the mechanical and microstructural properties of concrete. Construction and Building Materials 228, 116757. <a href="https://doi.org/10.1016/j.conbuildmat.2019.116757." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2019.116757.</a>
DOI: https://doi.org/10.2478/sspjce-2023-0008 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Published on: Dec 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Youcef Toumi, Samy Mezhoud, Otmane Boukendakdji, Moussa Hadjadj, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.