References
- [1] Ambily, A.P. & Gandhi, S.R. (2007) Behavior of stone columns based on experimental and FEM analysis. J. Geotech. Geoenviron. Eng. 133 (4), 405-415. http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405)
- [2] ASTM D 1195. Standard Test Method for Repetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements.
- [3] ASTM C 131. Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.
- [4] Babu, M.D., Nayak, S. & Shivashankar, R. (2013) A critical review of construction, analysis and behavior of stone columns. Geotech. Geol. Eng. 31 (1), 1-22. http://dx.doi.org/10.1007/s10706-012-9555-9
- [5] Benmebarek, S., Remadna, A. & Benmebarek, N. (2018) Numerical Modelling of Stone Column Installation Effects on Performance of Circular Footing. Int. J. of Geosynth. and Ground Eng. 4, 23. http://dx.doi.org/10.1007/s40891-018-0140-z
- [6] Ellouze, S., Bouassida, M., Hazzar, L. & Mroueh, H. (2010) On settlement of stone column foundation by Priebe’s method. Proceedings of the Institution of Civil Engineers - Ground Improvement. 163 (2), 101-107. https://doi.org/10.1680/grim.2010.163.2.101
- [7] Elsawy, M.B. & El-Garhy, B. (2017) Performance of granular piles improved soft ground under raft foundation: a numerical study. Int. J. Geosynth. Ground Eng. 3 (4), 36. http://dx.doi.org/10.1007/s40891-017-0113-7
- [8] Fattah, M.Y. Zabar, B.S. & Hassan, H.A. (2015) Soil arching analysis in embankments on soft clays reinforced by stone columns. Structural Engineering and Mechanics. 56 (4), 507-534. https://doi.org/10.12989/SEM.2015.56.4.507
- [9] Jefferies, M.G. & Davies, M. (1993) Use of the CPTu to Estimate Equivalent SPT N60. Geotech. Testing J., GTJODJ. 16 (4), 458-468.
- [10] Killeen, M.M. & McCabe, B.A. (2014) Settlement performance of pad footings on soft clay supported by stone columns: a numerical study. Soils Found. 54 (4), 760-776. http://dx.doi.org/10.1016/j.sandf.2014.06.011
- [11] Kirsch, K. & Kirsch, F. (2010) Ground Improvement by Deep Vibratory Methods. Spon Press, London and New York.
- [12] Kulhawy, F.H. & Mayne, P.H. (1990) Manual on estimating soil properties for foundation design. Report EL-6800 Electric Power Research Institute; EPRI, August 1990.
- [13] Maheshwari, P. & Khatri, S. (2012) Nonlinear analysis of infinite beams on granular bed-stone column-einforced earth beds under moving loads. Soils Found. 52 (1), 114-125, http://dx.doi.org/10.1016/j.sandf.2012.01.004
- [14] Mohanty, P., & Samanta, M. (2015). Experimental and Numerical Studies on Response of the Stone Column in Layered Soil. Int. J. of Geosynth. and Ground Eng. 1, 27. http://dx.doi.org/10.1007/s40891-015-0029-z
- [15] Nayak, S., Vibhoosha, M.P. & Bhasi, A. (2019). Effect of Column Configuration on the Performance of Encased Stone Columns with Basal Geogrid Installed in Lithomargic Clay. Int. J. of Geosynth. and Ground Eng. 5, 29. http://dx.doi.org/10.1007/s40891-019-0181-y
- [16] Ng, K.S. & Tan, S.A. (2015). Stress Transfer Mechanism in 2D and 3D Unit Cell Models for Stone Column Improved Ground. Int. J. of Geosynth. and Ground Eng. 1, 3. http://dx.doi.org/10.1007/s40891-014-0003-1
- [17] Priebe, H.J. (1976). Abschätzung des Setzungsverhaltens eines durch Stopfverdichtung verbesserten Baugrundes. Die Bautechnik, 53 (8).
- [18] Priebe, H.J. (1987). Abschätzung des Scherwiderstandes eines durch Stopfverdichtung verbesserten Baugrundes. Die Bautechnik, 55 (8).
- [19] Priebe, H.J. (1988). Zur Abschätzung des Setzungsverhaltens eines durch Stopfverdichtung verbesserten Baugrundes. Die Bautechnik, 65 (1).
- [20] Priebe, H.J. (1995). Die Bemessung von Rüttelstopfverdichtungen. Die Bautechnik, 72 (3).
- [21] Priebe, H.J. (1998). Vibro replacement to prevent earthquake induced liquefaction. Ground Engineering, London.
- [22] Priebe, H.J. (2003). Zur Bemessung von Rüttelstopfverdichtungen – Anwendung des Verfahrens bei extrem weichen Böden, bei schwimmenden Gründungen und beim Nachweis der Sicherheit gegen Gelände – oder Böschungsbruch. Die Bautechnik, 80.
- [23] Remadna, A., Benmebarek, S. & Benmebarek, N. (2020). Numerical Analyses of the Optimum Length for Stone Column Reinforced Foundation. Int. J. of Geosynth. and Ground Eng. 6, 34. http://dx.doi.org/10.1007/s40891-020-00218-x
- [24] Robertson, P.K. & Wride, C. (1998). Evaluating cyclic liquefaction potential using the CPT. Can. Geotech. J. 35 (3), 442-459.
- [25] Robertson, P.K. (2009). Interpretation of cone penetration tests – a unified approach, Canadian Geotech. J. 46 (11), 1337-1355. http://dx.doi.org/10.1139/T09-065
- [26] Robertson, P.K. (2010). Estimating soil unit weight from CPT. 2nd International Symposium on Cone Penetration Testing. Huntington Beach, CA, USA, May 2010.
- [27] Schanz, T. (1998). Zur Modellierung des Mechanischen Verhaltens von Reibungsmaterialen. Habilitation. Stuttgart Universität.
- [28] Schanz, T., Vermeer, P.A., & Bonnier, P.G. (1999). The hardening-soil model: Formulation and verification. In R.B.J. Brinkgreve, Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam. 281-290, http://dx.doi.org/10.1201/9781315138206-27
- [29] Shamsi, M., Ghanbari, A. & Nazariafshar, J. (2019). Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers. Geomech. and Eng. 19 (4), 329-342. http://dx.doi.org/10.12989/GAE.2019.19.4.329
- [30] Yu. Y., Wang, Z. & Sun, H. (2020). Optimal design of stone columns reinforced soft clay foundation considering design robustness. Geomech. and Eng. 22 (4), 305-318. http://dx.doi.org/10.12989/gae.2020.22.4.305
