Have a personal or library account? Click to login
Behaviour of Self-Compacting Concrete incorporating Natural Perlite used as Part of Cement and as Aggregates Cover

Behaviour of Self-Compacting Concrete incorporating Natural Perlite used as Part of Cement and as Aggregates

Open Access
|Dec 2021

References

  1. [1] Okamura, H. (1997). Self-compacting high performance concrete. Concr.Int. 19(7), 50–54.
  2. [2] Okamura, H. & Ouchi, M. (2003). Self-compacting concrete. J. Adv. Concr, Technol, 15.10.3151/jact.1.5
  3. [3] Silva, P. R. & Brito, J. (2015). Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler. Construction and Building Materials. 86, 101-112.http://dx.doi.org/10.1016/j.conbuildmat.2015.03.110.10.1016/j.conbuildmat.2015.03.110
  4. [4] Youjun, X., Baoju, L., Jian, Y. & Shiqiong, Z. (2002). Optimum mix parameters of high-strength self-compacting concrete with ultrapulverized fly ash. Cem. Concr. Res. 32, 477.10.1016/S0008-8846(01)00708-6
  5. [5] Ivanauskas, E., Rudzionis, Z., Navickas, A. A. & Dauksys, M. (2008). Investigation of shale ashes influences on the self-compacting concrete properties. Mater. Sci. (Medziagotyra). 14(3), 247–253.
  6. [6] Chandra, S. & Berntsson, L. (2002). Lightweight aggregate concrete. Science, technology, and applications NY, William Andrew Publishing, Noyes.
  7. [7] Demirboga, R., O¨ru¨ng, I. R. & Gu¨l, l. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes, Cem Concr Res. 31 (11), 1627–1632.
  8. [8] Urhan, S. (1987). Alkali silica and pozzolanic reactions in concrete Part 2: Observations on expanded perlite aggregate concretes. Cem Concr Res. 17(3), 465–77.10.1016/0008-8846(87)90010-X
  9. [9] Erdem, T. K., Meral, C., Tokyay, M. & Erdogan, T. Y. (2007). Use of perlite as a pozzolanic addition in producing blended cements. Cement & Concrete Composites. 29, 13–21. DOI: 10.1016/j.cemconcomp.2006.07.01810.1016/j.cemconcomp.2006.07.018
  10. [10] Terkman, I. &, Kantarci, A. (2006). Effect of expanded perlite aggregate and different conditions curing of the drying shrinkage of self-compacting concrete. Indian journal of engineering& Materials sciences. 13(6), 247-252.
  11. [11] Yu, L. H., Ou1, H. & Lee, L. L. (2003). Investigation on pozzolanic effect of perlite powder in concrete. Cement and Concrete Research. 33(1), 73–76.10.1016/S0008-8846(02)00924-9
  12. [12] Bhuvaneshwari, K., Dhanalakshmi, G. & Kaleeswari, G. (2017). Experimental study on lightweight concrete using perlite. International Research Journal of Engineering and Technology. 4(4), 2451-2455.
  13. [13] Gunning, D. F., Eng, P., McNeal & Associates Consultants Ltd. (1994). Perlite Market Study for British Columbia.
  14. [14] Johari, M. A. M., Brooksb, J. J., Kabira, S. & Rivard, P. (2011). Influence of supplementary cementitious materials on engineering properties of high strength concrete. Construction and Building Materials, 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.10.1016/j.conbuildmat.2010.12.013
  15. [15] Yu, L. H., Ou, H. & Zhou, S. X. (2010). Influence of Perlite Admixture on Pore Structure of Cement Paste. Advanced Materials Research. 97, 552-555.10.4028/www.scientific.net/AMR.97-101.552
  16. [16] Esfandiari, J. & Loghmani, P. (2019). Effect of perlite powder and silica fume on the compressive strength and microstructural characterization of self-compacting concrete with lime-cement binder. Measurement. 147, 106846.10.1016/j.measurement.2019.07.074
  17. [17] Karein, S.,Motahari, M. et al. (2018). Effects of the mechanical milling method on transport properties of self-compacting concrete containing perlite powder as a supplementary cementitious material. Construction and Building Materials. 172, 677-684.10.1016/j.conbuildmat.2018.03.205
  18. [18] Sičáková,A., Figmigová,E. & Špak, M. (2020). Comparison of the strength development of binary and ternary cements containing perlite powder. SSP – Journal of Civil Engineering. 15(1), 47-57. DOI: 10.1515/sspjce-2020-0006.10.1515/sspjce-2020-0006
  19. [19] Mansour, S.M. (2020). Physical-mechanical properties of steel fibre-reinforced self-compacting concrete containing natural perlite addition, International Journal of Microstructure and Materials Properties.15 (2), 122-140. https://doi/abs/10.1504/IJMMP.2020.106923
  20. [20] El Mir, A., Nehme, S.G. & Assaad, J.J. (2020). Durability of self-consolidating concrete containing natural waste perlite powders, Heliyon.6. https://doi.org/10.1016/j.heliyon.2020.e0316510.1016/j.heliyon.2020.e03165
  21. [21] Mansour, S.M., Haddadou, N. & Chaid, R. (2021). Valorization of powder of volcanic rocks used as cement substitution in self-compacting concrete, European Journal of Environmental and Civil Engineering, DOI: 10.1080/19648189.2021.191678210.1080/19648189.2021.1916782
  22. [22] Annual Book of ASTM Standards, ASTM C 618-01. (2002). Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. American Society for Testing and Materials, PA.
  23. [23] Wasserman,R. & Bentur, A. (1996). Interfacial inter-actions in lightweight aggregate concretes and their influence on the concrete strength. Cem Concr Compos. 18(1), 67–76.10.1016/0958-9465(96)00002-9
  24. [24] Zhang, M. H. & Gjorv, O. E. (1990). Pozzolanic reactivity of lightweight aggregates. Cem Concr Res. 20(6), 884–90.10.1016/0008-8846(90)90050-8
  25. [25] NF EN 12350-8. (2010). Essai pour béton frais – partie 8: béton autoplaçant– Essai d'étalement au cône d'Abrams.
  26. [26] NF EN 12350-10. (2010). Essai pour béton frais – partie 10: béton autoplaçant– Essai à la boite en L.
  27. [27] NF EN 12350-11. (2010). Essai pour béton frais – partie 1: béton autoplaçant– Essai de stabilité au tamis.
  28. [28] EFNARC. (2005). European guidelines for self-compacting concrete: specification, production and use. Self-compacting concrete European project group.
  29. [29] NF EN 12390-2. (2001). Essais pour béton durci – Partie 2: confection et conservation des éprouvettes pour essais de résistance.
  30. [30] NF EN 12390-3. (2001). Essais pour béton durci - Partie 3: résistance à la compression des éprouvettes.
  31. [31] NF EN 12390-5. (2001). Essais pour béton durci - Partie 5: résistance à la flexion sur éprouvettes.
  32. [32] Krautkramer, J. H. (1977). Ultrasonic Testing of Materials. Springer-Verlag, Berlin.10.1007/978-3-662-02296-2
  33. [33] Markham, M. F. (1957). Measurement of elastic constants by the ultrasonic pulse method. British Journal of Applied Physics. 8(6), 56-63.10.1088/0508-3443/8/S6/312
  34. [34] NFP18-418. (1989). Béton - Auscultation sonique- Mesure du temps de propagation d’ondes soniques dans le béton.
  35. [35] Gupta, T., Chaudhary, S. & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J. Clean. Prod. 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.08110.1016/j.jclepro.2015.07.081
  36. [36] NF EN 12350-6. (2012). Essais pour béton frais - Partie 6: masse volumique.
  37. [37] NF EN 12350-7. (2012). Essais pour béton durci - Partie 7: masse volumique.
  38. [38] Mansour, S.M. (2020). Behavior of self- compacting concrete incorporating calcined pyrophyllite as supplementary cementitious material. J. Build. Mater. Struct. 7 (2), 119-129. https://doi.org/10.5281/zenodo.4005645
  39. [39] Wild, S., Khatib, J. M. & Jones, A. (1996). Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res. 26(10), 1537–44. https://doi.org/10.1016/0008-8846(96)00148-210.1016/0008-8846(96)00148-2
  40. [40] Neville, A. M. & Brooks, J. J. (1987). Concrete technology. USA, Longman Group UK Limited.
  41. [41] Whitehurst, E. A. (1951). Soniscope tests concrete structures, Research and development laboratories of the portland cement association. J Am Concr Inst. 47, 433–44.
  42. [42] Jones, R. & Gatfield, E. N.(1955). Testing concrete by an ultrasonic pulse technique. London, H.M. Stationery Office.
  43. [43] Fascicule 62, CCTG, DTU P 18-702. (2000). Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites, Règles BAEL 91.
DOI: https://doi.org/10.2478/sspjce-2021-0020 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 115 - 132
Published on: Dec 30, 2021
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Sabria Malika Mansour, Youcef Ghernouti, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.