[1] APRUE. (2019), L'Agence Nationale pour la Promotion et la Rationalisation de l'Utilisation de l'Energie (2005), La situation énergétique nationale, chiffre 2017, édition 2019.
[2] AMIRI, Shideh Shams, MOTTAHEDI, Mohammad, et ASADI, Somayeh. Using multiple regression analysis to develop energy consumption indicators for commercial buildings in the US. Energy and Buildings, 2015, vol. 109, p. 209-216.10.1016/j.enbuild.2015.09.073
[3] BOUYER, Julien. Modélisation et simulation des microclimats urbains-Etude de l'impact de l'aménagement urbain sur les consommations énergétiques des bâtiments. 2009. PHD dissertation. Université de Nantes, France.
[4] SEMAHI, Samir, ZEMMOURI, Noureddine, SINGH, Manoj Kumar, et al. Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Building and Environment, 2019, vol. 161, p. 106271.10.1016/j.buildenv.2019.106271
[5] CARLO, Joyce et LAMBERTS, Roberto. Development of envelope efficiency labels for commercial buildings: Effect of different variables on electricity consumption. Energy and Buildings, 2008, vol. 40, no 11, p. 2002-2008.10.1016/j.enbuild.2008.05.002
[6] BANSAL, Naresh K. BHATTACHARYA, Amitabh. Parametric equations for energy and load estimations for buildings in India. Applied thermal engineering, 2009, vol. 29, no 17-18, p. 3710-3715.10.1016/j.applthermaleng.2009.07.002
[7] LI, D. H. W., WONG, Sai Li, et CHEUNG, King Lok. Energy performance regression models for office buildings with daylighting controls. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, vol. 222, no 6, p. 557-568 568.10.1243/09576509JPE620
[8] CATALINA, Tiberiu, VIRGONE, Joseph, et BLANCO, Eric. Development and validation of regression models to predict monthly heating demand for residential buildings. Energy and buildings, 2008, vol. 40, no 10, p. 1825-1832.10.1016/j.enbuild.2008.04.001
[9] RATTI, Carlo, BAKER, Nick, et STEEMERS, Koen. Energy consumption and urban texture. Energy and buildings, 2005, vol. 37, no 7, p. 762-776.10.1016/j.enbuild.2004.10.010
[10] DASCALAKI, Elena G., DROUTSA, Kaliopi, GAGLIA, Athina G., et al. Data collection and analysis of the building stock and its energy performance—An example for Hellenic buildings. Energy and Buildings, 2010, vol. 42, no 8, p. 1231-1237.10.1016/j.enbuild.2010.02.014
[12] BOUKARTA, Soufiane. BEREZOWSKA-AZZAG, Ewa. 'Urban island' as an energy assessment tool: The case of Mouzaia, Algeria. Journal of Applied Engineering Science, 2017, vol. 15, no 2, p. 128-139.10.5937/jaes15-12951
[13] BARTIAUX, Françoise. A socio-anthropological approach to energy-related behaviours and innovations at the household level. ECEEE (European Council for Energy-Efficient Economy): ECEEE 2003 summer study proceedings–Time to turn down energy demand, 2003, p. 1239-1250.
[14] SWAN, Lukas G. et UGURSAL, V. Ismet. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and sustainable energy reviews, 2009, vol. 13, no 8, p. 1819-1835.10.1016/j.rser.2008.09.033
[16] YU, Zhun, FUNG, Benjamin CM, HAGHIGHAT, Fariborz, et al. A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and buildings, 2011, vol. 43, no 6, p. 1409-1417.10.1016/j.enbuild.2011.02.002
[17] SHAKOURI, Mahmoud, BANIHASHEMI NAMINI, S. S., et JAVAHERI, Amin. Analysis and Comparison of Impacts of Design Optimization Approach with Occupant Behaviour on Energy Consumption Reduction in Residential Buildings. International Journal of Engineering and Technology, 2012.
[18] OUYANG, Jinlong et HOKAO, Kazunori. Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy and buildings, 2009, vol. 41, no 7, p. 711-720.10.1016/j.enbuild.2009.02.003
[19] DALL’O’, Giuliano, Annalisa GALANTE, Marco TORRI, “A methodology for the energy performance classification of residential building stock on an urban scale”. Energy and Buildings 48 (2012) 211–219.10.1016/j.enbuild.2012.01.034
[20] HONG, Tianzhen et LIN, Hung-Wen. Occupant behavior: impact on energy use of private offices. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2013.
[21] ABUIMARA, Tareq, O'BRIEN, William, et GUNAY, Burak. Quantifying the impact of occupants’ spatial distributions on office buildings energy and comfort performance. Energy and Buildings, 2021, vol. 233, p. 110695.10.1016/j.enbuild.2020.110695
[22] BOUKARTA, Soufiane. BEREZOWSKA-AZZAG, Ewa. Energy demand of occupant’s spatial modification in residential buildings. Case study of Médéa, Algeria. Selected Scientific Papers-Journal of Civil Engineering, 2018, vol. 13, p. 15-28.10.1515/sspjce-2018-0002
[23] STEEMERS, Koen. Energy and the city: density, buildings and transport. Energy and buildings, 2003, vol. 35, no 1, p. 3-14.10.1016/S0378-7788(02)00075-0
[24] MAÏZIA, Mindjid, SÈZE, Claire, BERGE, Sébastien, et al. Energy requirements of characteristic urban blocks. Proc. of CISBAT 2009-Renewables in a changing climate-From Nano to urban scale, 2009.
[25] CAPUTO, Paola, COSTA, Gaia, et FERRARI, Simone. A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy, 2013, vol. 55, p. 261-270.10.1016/j.enpol.2012.12.006
[26] ALI-TOUDERT, Fazia et WEIDHAUS, Juliane. Numerical assessment and optimization of a low- energy residential building for Mediterranean and Saharan climates using a pilot project in Algeria. Renewable Energy, 2017, vol. 101, p. 327-346.10.1016/j.renene.2016.08.043
[27] LI, Cheng, LI, Junxiang, et WU, Jianguo. What drives urban growth in China? A multi-scale comparative analysis. Applied geography, 2018, vol. 98, p. 43-51.10.1016/j.apgeog.2018.07.002
[28] KIM, Hae-Young. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative dentistry & endodontics, 2013, vol. 38, no 1, p. 52-54.10.5395/rde.2013.38.1.52359158723495371
[29] NEILL, Simon P. et HASHEMI, M. Reza. Ocean modelling for resource characterization. Fundamentals of ocean renewable energy, 2018, p. 193-235.10.1016/B978-0-12-810448-4.00008-2
[30] Hastie, T., Tibshirani, R., & Friedman, J. (2009). Linear methods for regression. In The elements of statistical learning (pp. 43-99). Springer, New York, NY.10.1007/978-0-387-84858-7_3
[32] DTR C3.2, Règlement Thermique des Bâtiments d’Habitation - Règles de calcul des déperditions Calorifiques, Fascicule 1, Document Technique Réglementaire, Ministère de l’habitat et de l’urbanisme, CNERIB, Alger, 2004.
[34] SANTOS NOBRE, Juvêncio et DA MOTTA SINGER, Julio. Residual analysis for linear mixed models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 2007, vol. 49, no 6, p. 863-875.10.1002/bimj.20061034117638292
[35] BOUKARTA, Soufiane. Déterminants de la forme urbaine générant le potentiel de maitrise de l’énergie en zone semi-aride. 2019. PHD dissertation. Ecole polytechnique d’architecture et d’urbanisme (EPAU).
[36] TAHMASEBI, Mohammad Mahdi, BANIHASHEMI, Saeed, et HASSANABADI, Mahmoud Shakouri. Assessment of the variation impacts of window on energy consumption and carbon footprint. Procedia engineering, 2011, vol. 21, p. 820-828.10.1016/j.proeng.2011.11.2083