Have a personal or library account? Click to login
Exploring the impact of balconies on cooling energy demand in an arid climate zone Cover

Exploring the impact of balconies on cooling energy demand in an arid climate zone

Open Access
|Dec 2021

References

  1. [1] Boukarta, S., & Berezowska, E. (2017). Exploring the Energy Implication of Urban Density in Residential Buildings. Journal of Applied Engineering Sciences, 7(1).10.1515/jaes-2017-0001
  2. [2] Boukarta, S., & Berezowska-Azzag, E. (2018). Energy demand of occupant’s spatial modification in residential buildings. Case study of Médéa, Algeria. Selected Scientific Papers-Journal of Civil Engineering, 13(s1),15-28.
  3. [3] Ribeiro, C., Ramos, N. M., & Flores-Colen, I. (2020). A review of balcony impacts on the indoor environmental quality of dwellings. Sustainability, 12(16), 6453.10.3390/su12166453
  4. [4] Kotulla, T., Denstadli, J. M., Oust, A., & Beusker, E. (2019). What Does It Take to Make the Compact City Liveable for Wider Groups? Identifying Key Neighbourhood and Dwelling Features. Sustainability, 11(12), 3480.10.3390/su11123480
  5. [5] Omrani, S., Garcia-Hansen, V., Capra, B. R., & Drogemuller, R. (2017). On the effect of provision of balconies on natural ventilation and thermal comfort in high-rise residential buildings. Building and Environment, 123, 504-516.10.1016/j.buildenv.2017.07.016
  6. [6] Hastings, S. R. (2004). Breaking the “heating barrier”: Learning from the first houses without conventional heating. Energy and Buildings, 36(4), 373-380.10.1016/j.enbuild.2004.01.027
  7. [7] Chand, I., Bhargava, P. K., & Krishak, N. L. V. (1998). Effect of balconies on ventilation inducing aeromotive force on low-rise buildings. Building and environment, 33(6), 385-396.10.1016/S0360-1323(97)00054-1
  8. [8] Kahsay, M.T.; Bitsuamlak, G.T.; Tariku, F. CFD simulation of external CHTC on a high-rise building with and without façade appurtenances. Build. Environ. 2019, 165.10.1016/j.buildenv.2019.106350
  9. [9] Kropp, W., & Bérillon, J. (1998). A theoretical model to investigate the acoustic performance of building facades in the low and middle frequency range. Acta Acustica united with Acustica, 84(4), 681-688.
  10. [10] Wang, X.; Mao, D.; Yu, W.; Jiang, Z. Acoustic performance of balconies having inhomogeneous ceiling surfaces on a roadside building facade. Build. Environ. 2015, 93, 1–8.
  11. [11] Giovannini, L., Verso, V. R. L., Karamata, B., & Andersen, M. (2015). Lighting and energy performance of an adaptive shading and daylighting system for arid climates. Energy Procedia, 78, 370-375.10.1016/j.egypro.2015.11.675
  12. [12] Saleh, P. H. (2015). Thermal performance of glazed balconies within heavy weight/thermal mass buildings in Beirut, Lebanon's hot climate. Energy and Buildings, 108, 291-303.10.1016/j.enbuild.2015.09.009
  13. [13] Mihalakakou, G. (2002). On the use of sunspace for space heating/cooling in Europe. Renewable Energy, 26(3), 415-429.10.1016/S0960-1481(01)00138-0
  14. [14] Kim, G., & Kim, J. T. (2010). Healthy-daylighting design for the living environment in apartments in Korea. Building and Environment, 45(2), 287-294.10.1016/j.buildenv.2009.07.018
  15. [15] Foged, I. W. (2019). Thermal responsive performances of a Spanish balcony-based vernacular envelope. Buildings, 9(4), 80.10.3390/buildings9040080
  16. [16] Nowak-Dzieszko, K., & Rojewska-Warchał, M. (2015). Influence of the balcony glazing construction on thermal comfort of apartments in retrofitted large panel buildings. Procedia Engineering, 108, 481-487.10.1016/j.proeng.2015.06.187
  17. [17] Dahlan, N.D.; Jones, P.J.; Alexander, D.K.; Salleh, E.; Alias, J. Evidence base prioritisation of indoor comfort perceptions in Malaysian typical multi-storey hostels. Build. Environ. 2009, 44, 2158–2165.
  18. [18] Chan, A. L. S., & Chow, T. T. (2010). Investigation on energy performance and energy payback period of application of balcony for residential apartment in Hong Kong. Energy and Buildings, 42(12), 2400-2405.10.1016/j.enbuild.2010.08.009
  19. [19] Raeissi, S., & Taheri, M. (1998). Optimum overhang dimensions for energy saving. Building and Environment, 33(5), 293-302.10.1016/S0360-1323(97)00020-6
  20. [20] Yu, J., Yang, C., & Tian, L. (2008). Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy and Buildings, 40(8), 1536-1546.10.1016/j.enbuild.2008.02.020
  21. [21] Kaoula, D., & Bouchair, A. (2019). The pinpointing of the most prominent parameters on the energy performance for optimal passive strategies in ecological buildings based on bioclimatic, sensitivity and uncertainty analyses. International Journal of Ambient Energy, 1-28.
  22. [22] Babaee, F.; Fayaz, R.; Sarshar, M. The optimum design of sunspaces in apartment blocks in cold climate. Archit. Sci. Rev. 2016, 59, 239–253.
  23. [23] Li, C., Li, J., & Wu, J. (2018). What drives urban growth in China? A multi-scale comparative analysis. Applied Geography, 98, 43-51.10.1016/j.apgeog.2018.07.002
DOI: https://doi.org/10.2478/sspjce-2021-0014 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 25 - 35
Published on: Dec 30, 2021
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Soufiane Boukarta, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.