Have a personal or library account? Click to login
Sampling bias in presence-only data used for species distribution modelling: theory and methods for detecting sample bias and its effects on models Cover

Sampling bias in presence-only data used for species distribution modelling: theory and methods for detecting sample bias and its effects on models

Open Access
|Oct 2018

References

  1. Aarvik, L., Hansen, L.O. & Kononenko, V. 2009. Norges sommerfugler. Håndbok over Norges dagsommerfugler og nattsvermere. – Norwegian Entomological Society & Natural History Museum, Univ. of Oslo, Oslo.
  2. Ahti, T., Hämet-Ahti, L. & Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. – Annls bot. fenn. 5: 169-211.
  3. Anderson, R.P. 2012. Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. – Ann. N.Y. Acad. Sci. 1260: 66-80.10.1111/j.1749-6632.2011.06440.x
  4. Anderson, R.P. & Gonzalez, I.J. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. – Ecol. Modelling 222: 2796–2811.10.1016/j.ecolmodel.2011.04.011
  5. Anderson, R.P., Peterson, A.T. & Gómez-Laverde, M. 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. – Oikos 98: 3–16.10.1034/j.1600-0706.2002.t01-1-980116.x
  6. Araújo, M.B. & Guisan, A. 2006. Five (or so) challenges for species distribution modelling. –J. Biogeogr. 33: 1677–1688.10.1111/j.1365-2699.2006.01584.x
  7. Araújo, M.B. & Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. – Global Ecol. Biogeogr. 16: 743–753.10.1111/j.1466-8238.2007.00359.x
  8. Austin, M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. – Ecol. modelling 157: 101–118.10.1016/S0304-3800(02)00205-3
  9. Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. – Ecol. Modelling 200: 1–19.10.1016/j.ecolmodel.2006.07.005
  10. Austin, M. & Smith, T., 1989. A new model for the continuum concept. – Vegetatio 83: 35–47.10.1007/BF00031679
  11. Austin, M.P. & Gaywood, M.J., 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. – Journal Veg. Sci. 5: 473–482.10.2307/3235973
  12. Bakkestuen, V., Erikstad, L. & Halvorsen, R. 2008. Step-less models for regional environmental variation in Norway. – J. Biogeogr. 35: 1906–1922.10.1111/j.1365-2699.2008.01941.x
  13. Bartsch, H., Binkiewitz, E., Rådén, A. & Nasibov, E. 2009. Nationalnyckeln till Sveriges flora och fauna. Tvåvingar: Blomflugor: Syrphinae. Diptera: Syrphidae: Syrphinae. – ArtDatabanken, Uppsala.
  14. Bean, W.T., Stafford, R. & Brashares, J.S. 2012. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. –Ecography 35: 250–258.10.1111/j.1600-0587.2011.06545.x
  15. Boakes, E.H., McGowan, P.J., Fuller, R.A., Chang-qing, D., Clark, N.E., O’Connor, K. & Mace, G.M. 2010. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. – PLoS ONE 8: 1000385: 1–11.10.1371/journal.pbio.1000385287938920532234
  16. Boulangeat, I., Gravel, D. & Thuiller, W. 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. – Ecol. Letters 15: 584–593.10.1111/j.1461-0248.2012.01772.x399963922462813
  17. Brown, J.H. 1984. On the relationship between abundance and distribution of species. – Am. Nat. 124: 255–279.10.1086/284267
  18. Brown, J.H., Stevens, G.C. & Kaufman, D.M., 1996. The geographic range: size, shape, boundaries, and internal structure. – A. Rev. Ecol. Syst. 27: 597–623.10.1146/annurev.ecolsys.27.1.597
  19. Bystriakova, N., Peregrym, M., Erkens, R.H., Bezsmertna, O. & Schneider, H. 2012. Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. – Syst. Biodiv. 10: 305–315.10.1080/14772000.2012.705357
  20. Cavanaugh, K.C., Siegel, D.A., Raimondi, P.T. & Alberto, F. 2014. Patch definition in metapopulation analysis: a graph theory approach to solve the mega-patch problem. – Ecology 95: 316-328.10.1890/13-0221.124669726
  21. Collins, S.L., Glenn, S.M. & Roberts, D.W., 1993. The hierarchical continuum concept. – J. Veg. Sci. 4: 149–156.10.2307/3236099
  22. Cox, C.B. & Moore, P.D. 2010. Biogeography: an ecological and evolutionary approach, ed. 8. – Wiley, Chichester.
  23. Crall, A.W., Jarnevich, C.S., Panke, B., Young, N., Renz, M. & Morisette, J. 2013. Using habitat suitability models to target invasive plant species surveys. – Ecol. Appl. 23: 60–72.10.1890/12-0465.123495636
  24. Crawley, M.J. 2013. The R book, ed. 2. – Wiley, Chichester.
  25. Dahl, E. & Birks, J., 1998. The phytogeography of Northern Europe. – Cambridge University Press, Cambridge.10.1017/CBO9780511565182
  26. Edvardsen, A., Bakkestuen, V. & Halvorsen, R. 2011. A fine-grained spatial prediction model for the red-listed vascular plant Scorzonera humilis. – Nord. J. Bot. 29: 495–504.10.1111/j.1756-1051.2010.00984.x
  27. Ehnström, B. & Holmer, M. 2007. Nationalnyckeln till Sveriges flora och fauna. Skalbaggar: Långhorningar. Coleoptera: Cerambycidae. – ArtDatabanken, Uppsala.
  28. Eliasson, C.U., Ryrholm, N. & Gärdenfors, U. 2005. Nationalnyckeln till Sveriges flora och fauna: Fjärilar. Dagfjärilar: Hesperiidae–Nymphalidae. – ArtDatabanken, Uppsala.
  29. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. – Ecography 29: 129–151.10.1111/j.2006.0906-7590.04596.x
  30. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. – Divers. Distrib. 17: 43–57.10.1111/j.1472-4642.2010.00725.x
  31. Ellenberg, H. 1954. Über enige Fortschritte der kausalen Vegetationskunde. – Vegetatio 5-6: 199-211.10.1007/BF00299574
  32. Erikstad, L., Bakkestuen, V., Bekkby, T. & Halvorsen, R. 2013. Impact of scale and quality of digital terrain models on predictability of seabed terrain types. – Mar. Geod. 36: 2–21.10.1080/01490419.2012.747454
  33. Fitzpatrick, M., Gotelli, N. & Ellison, A. 2013. MaxEnt versus MaxLike: empirical comparisons with ant species distributions. – Ecosphere 4: 55: 1–15.10.1890/ES13-00066.1
  34. Fourcade, Y., Engler, J.O., Rödder, D. & Secondi, J. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. – PLoS ONE 9: e97322: 1-18.10.1371/journal.pone.0097122401826124818607
  35. Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. – Cambridge University Press, Cambridge.10.1017/CBO9780511810602
  36. Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. 2000. Abundance–occupancy relationships. – J. Appl. Ecol. 37: 39–59.10.1046/j.1365-2664.2000.00485.x
  37. Gaston, K.J., Chown, S.L. & Evans, K.L. 2008. Ecogeographical rules: elements of a synthesis. – J. Biogeogr. 35: 483–500.10.1111/j.1365-2699.2007.01772.x
  38. Gauslaa, Y. 1984. Heat resistance and energy budget in different Scandinavian plants. – Ecography 7: 5–78.10.1111/j.1600-0587.1984.tb01098.x
  39. Graham, J., Jarnevich, C., Young, N., Newman, G. & Stohlgren, T. 2011. How will climate change affect the potential distribution of Eurasian tree sparrows Passer montanus in North America? – Curr. Zool. 57: 648–654.10.1093/czoolo/57.5.648
  40. Grytnes, J.A., Birks, H.J.B. & Peglar, S.M., 1999. Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. – Nord. J. Bot. 19: 489–503.10.1111/j.1756-1051.1999.tb01233.x
  41. Guisan, A. & Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. – Ecol. Modelling 135: 147–186.10.1016/S0304-3800(00)00354-9
  42. Gutiérrez, D., Fernández, P., Seymour, A.S. & Jordano, D. 2005. Habitat distribution models: are mutualist distributions good predictors of their associates? – Ecol. Appl. 15: 3–18.10.1890/03-5344
  43. Halvorsen, R. 2012. A gradient analytic perspective on distribution modelling. – Sommerfeltia 35: 1–165.10.2478/v10208-011-0015-3
  44. Halvorsen, R. 2013. A maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. – Sommerfeltia 36: 1–132.10.2478/v10208-011-0016-2
  45. Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. 2015. Opportunities for improved distridistribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. – Ecography 38: 172-183.10.1111/ecog.00565
  46. Hansen, V. & Larsson, S., 1973. Biller X. Blødvinger, klannere m.m.: Malacodermata, Fossipedes, Marcrodactylia og Brachymera. – Danm. Fauna 44: 41–42.
  47. Hanski, I. 1982. Dynamics of regional distribution: the core and satellite species hypothesis. – Oikos: 210–221.10.2307/3544021
  48. Hanski, I. 1998. Metapopulation dynamics. – Nature 396: 41–49.10.1038/23876
  49. Hanski, I. & Ovaskainen, O. 2000. The metapopulation capacity of a fragmented landscape. – Nature 404: 755–758.10.1038/3500806310783887
  50. Hanski, I. & Simberloff, D., 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski, I. & Gilpin, M.E. (eds.), Metapopulation biology: ecology, genetics, and evolution, Academic Press, San Diego, pp. 5–26.10.1016/B978-012323445-2/50003-1
  51. Hastie, T., Tibshirani, R. & Friedman, J. 2009. The elements of statistical learning, ed. 2. – Springer, New York.10.1007/978-0-387-84858-7
  52. Hatteland, B.A., Roth, S., Andersen, A., Kaasa, K., Støa, B. & Solhøy, T. 2013. Distribution and spread of the invasive slug Arion vulgaris Moquin-Tandon in Norway. – Fauna norv. 32: 13–26.10.5324/fn.v32i0.1473
  53. Hebblewhite, M., Merrill, E. & McDonald, T. 2005. Spatial decomposition of predation risk using resource selection functions: an example in a wolf–elk predator–prey system. – Oikos 111: 101–111.10.1111/j.0030-1299.2005.13858.x
  54. Heibl, C. & Renner, S.S. 2012. Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation. – Syst. Biol. 61: 823–834.10.1093/sysbio/sys034
  55. Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Körber, J.-H. 2007. Biotic interactions improve prediction of boreal bird distributions at macro-scales. – Global Ecol. Biogeogr. 16: 754–763.10.1111/j.1466-8238.2007.00345.x
  56. Hengeveld, R. & Haeck, J., 1982. The distribution of abundance. I. Measurements. – J. Biogeogr. 9: 303–316.10.2307/2844717
  57. Huston, M.A. 2002. Introductory essay: critical issues for improving predictions. In: Scott, J.M., Heglund, P.J., Morrison, M.L. Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B. (eds) Predicting species occurrences: issues of accuracy and scale, Island Press, Washington, DC, pp. 7–21.
  58. Jansen, F. & Oksanen, J. 2013. How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. – J. Veg. Sci. 24: 1108–1117.10.1111/jvs.12050
  59. Jaynes, E.T. 1957a. Information theory and statistical mechanics. – Phys. Rev. 106: 620–630.10.1103/PhysRev.106.620
  60. Jaynes, E.T. 1957b. Information theory and statistical mechanics 2. – Phys. Rev. 108: 171–190.10.1103/PhysRev.108.171
  61. Jiménez-Valverde, A., Lobo, J. & Hortal, J. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. – Divers. Distrib. 14: 885-890.10.1111/j.1472-4642.2008.00496.x
  62. Kadmon, R., Farber, O. & Danin, A. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. – Ecol. Appl. 13: 853–867.10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2
  63. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H. & Wilting, A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. – Divers. Distrib. 19: 1366-1379.10.1111/ddi.12096
  64. Leathwick, J. & Austin, M. 2001. Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. – Ecology 82: 2560–2573.10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2
  65. Lobo, J.M. 2008. More complex distribution models or more representative data? – Biodiv. Inform. 5: 14–19.10.17161/bi.v5i0.40
  66. Loehle, C. 2012. Relative frequency function models for species distribution modeling. – Ecography 35: 487–498.10.1111/j.1600-0587.2012.07389.x
  67. Loiselle, B.A., Jørgensen, P.M., Consiglio, T., Jiménez, I., Blake, J.G., Lohmann, L.G. & Montiel, O.M. 2008. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? – J. Biogeogr. 35: 105–116.10.1111/j.1365-2699.2007.01779.x
  68. MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L. & Hines, J.E. 2005. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. – Academic Press, Amsterdam.
  69. Mateo, R.G., Croat, T.B., Felicísimo, Á.M. & Muñoz, J. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. – Divers. Distrib. 16: 84–94.10.1111/j.1472-4642.2009.00617.x
  70. Mazzoni, S., Halvorsen, R. & Bakkestuen, V. 2015. MIAT: Modular R-wrappers for flexible implementation of MaxEnt Distribution Modelling. – Ecol. Informatics 30: 215-221.10.1016/j.ecoinf.2015.07.001
  71. McGill, B. & Collins, C. 2003. A unified theory for macroecology based on spatial patterns of abundance. – Evol. Ecol. Res. 5: 469–492.
  72. Meier, E.S., Kienast, F., Pearman, P.B., Svenning, J.-C., Thuiller, W., Araújo, M.B., Guisan, A. & Zimmermann, N.E. 2010. Biotic and abiotic variables show little redundancy in explaining tree species distributions. – Ecography 33: 1038–1048.10.1111/j.1600-0587.2010.06229.x
  73. Merow, C., Smith, M.J. & Silander, J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. – Ecography 36: 1058–1069.10.1111/j.1600-0587.2013.07872.x
  74. Millar, C.S. & Blouin-Demers, G. 2012. Habitat suitability modelling for species at risk is sensitive to algorithm and scale: A case study of Blanding’s turtle, Emydoidea blandingii, in Ontario, Canada. – J. Nat. Conserv. 20: 18–29.10.1016/j.jnc.2011.07.004
  75. Minchin, P.R. 1989. Montane vegetation of the Mt. Field massif, Tasmania: a test of some hypotheses about properties of community patterns. – Vegetatio 83: 97–110.10.1007/BF00031683
  76. Moen, A. 1999. National atlas of Norway: vegetation. – Norwegian Mapping Authority, Høne-foss.
  77. Oksanen, J. & Minchin, P.R. 2002. Continuum theory revisited: what shape are species responses along ecological gradients? – Ecol. Modelling 157: 119–129.10.1016/S0304-3800(02)00190-4
  78. Pearce, J. & Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. – Ecol. Modelling 133: 225–245.10.1016/S0304-3800(00)00322-7
  79. Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. 2012. Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. – Ecography 35: 684–692.10.1111/j.1600-0587.2011.07047.x
  80. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. & Blair, M.E. 2017. Opening the black box: an open-source release of Maxent. – Ecography 40: 887-893.10.1111/ecog.03049
  81. Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. – Ecol. Modelling 190. 231–259.10.1016/j.ecolmodel.2005.03.026
  82. Phillips, S.J. & Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. – Ecography 31: 161–175.10.1111/j.0906-7590.2008.5203.x
  83. Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwich, J.R. & Ferrier, S. 2009.
  84. Phillips, S.J., Dudík, M. & Schapire, R. 2004. A maximum entropy approach to species distribution modeling. – In: Anonymous (ed.), Proceedings of the 21st international conference on machine learning, ACM Press, New York, pp. 655-662.10.1145/1015330.1015412
  85. Phillips, S.J. & Elith, J. 2010. POC plots: calibrating species distribution models with presence-only data. – Ecology 91,: 2476-2484.10.1890/09-0760.120836469
  86. Primack, R.B. & Miao, S.L., 1992. Dispersal can limit local plant distribution. – Conserv. Biol. 6,:513–519.10.1046/j.1523-1739.1992.06040513.x
  87. Redfern, J., Ferguson, M., Becker, E., Hyrenbach, K., Good, C.P., Barlow, J., Kaschner, K., Baumgartner, M.F., Forney, K., Ballance, L. 2006. Techniques for cetacean–habitat modeling. – Mar. Ecol. Prog. Ser. 310: 281-295.10.3354/meps310271
  88. Reineking, B. & Schröder, B. 2006. Constrain to perform: regularization of habitat models. – Ecol. Model. 193: 675–690.10.1016/j.ecolmodel.2005.10.003
  89. Renner, I.W., & Warton, D.I. 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. – Biometrics 69: 274–281.10.1111/j.1541-0420.2012.01824.x23379623
  90. Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. 2010. Getting the most out of atlas data. – Divers. Distrib. 16: 363-375.10.1111/j.1472-4642.2010.00639.x
  91. Rydgren, K., Økland, R.H. & Økland, T. 2003. Species response curves along environmental gradients: a case study from SE Norwegian swamp forests. – J. Veg. Sci. 14: 869–880.10.1111/j.1654-1103.2003.tb02220.x
  92. Schweiger, O., Heikkinen, R.K., Harpke, A., Hickler, T., Klotz, S., Kudrna, O., Kühn, I., Pöyry, J. & Settele, J. 2012. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. – Global Ecol. Biogeogr. 21: 88–99.10.1111/j.1466-8238.2010.00607.x
  93. Searcy, C.A. & Shaffer, H.B. 2014. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. – Ecography 37: 983-992.10.1111/ecog.00733
  94. Shmida, A. & Wilson, M.V. 1985. Biological determinants of species diversity. – J. Biogeogr. 12: 1-20.10.2307/2845026
  95. Skre, O. 1979. The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures. – Nor. J. Bot. 26: 295–318.
  96. Soberon, J. & Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. – Biodivers. Informatics 2: 1-10..10.17161/bi.v2i0.4
  97. Stokland, J.N., Halvorsen, R. & Støa, B. 2011. Species distribution modelling—Effect of design and sample size of pseudo-absence observations. – Ecol. Model. 222: 1800–1809.10.1016/j.ecolmodel.2011.02.025
  98. Syfert, M.M., Smith, M.J. & Coomes, D.A. 2013. – PloS one 8: e55158: 1–10.10.1371/journal.pone.0055158
  99. ter Braak, C.J.F. & Prentice, I.C., 1988. A theory of gradient analysis. – Adv. Ecol. Res. 18: 271–317.10.1016/S0065-2504(08)60183-X
  100. Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. – J. R. Statist. Soc. Ser. B 58: 267-288.10.1111/j.2517-6161.1996.tb02080.x
  101. Vollering, J., Mazzoni, S. & Halvorsen, R. 2016. Package ‘MIAmaxent’ Version 0.3.7. – The R foundation for statistical computing, http://cran.r-project.org.
  102. Warren, D.L. & Seifert, S.N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. – Ecol. Appl. 21: 335–342.10.1890/10-1171.121563566
  103. Westley, P.A., Ward, E.J. & Fleming, I.A. 2013. Fine-scale local adaptation in an invasive freshwater fish has evolved in contemporary time. – Proc. R. Soc. B: Biol. Sci. 280: e20122327.10.1098/rspb.2012.2327357440623193126
  104. Whittaker, R.H. 1956. Vegetation of the Great Smoky Mountains. – Ecol. Monogr. 26: 1–80.10.2307/1943577
  105. Whittaker, R.H. 1967. Gradient analysis of vegetation. – Biol. Rev. 42: 207–264.10.1111/j.1469-185X.1967.tb01419.x4859903
  106. Wollan, A.K., Bakkestuen, V., Kauserud, H., Gulden, G. & Halvorsen, R. 2008. Modelling and predicting fungal distribution patterns using herbarium data. – J. Biogeogr. 35: 2298–2310.10.1111/j.1365-2699.2008.01965.x
  107. Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.H.C. & Veran, S. 2013. Presence-only modelling using MAXENT: when can we trust the inferences? – Meth. Ecol. Evol. 4: 236–243.10.1111/2041-210x.12004
  108. Økland, R.H. 1986. Rescaling of ecological gradients. II. The effect of scale on symmetry of species response curves. – Nord. J. Bot. 6: 661–670.10.1111/j.1756-1051.1986.tb00465.x
  109. Økland, R.H. 1990. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. – Sommerfeltia Suppl. 1: 1-233.10.2478/som-1990-0003
  110. Økland, R.H. 1992. Studies in SE Fennoscandian mires: relevance to ecological theory. – J. Veg. Sci. 3: 279–284.10.2307/3235693
DOI: https://doi.org/10.2478/som-2018-0001 | Journal eISSN: 2084-0098 | Journal ISSN: 0800-6865
Language: English
Page range: 1 - 53
Published on: Oct 29, 2018
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Bente Støa, Rune Halvorsen, Sabrina Mazzoni, Vladimir I. Gusarov, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Volume 38 (2018): Issue 1 (October 2018)