Have a personal or library account? Click to login
Neural Mechanisms of Organism-Dependent Affordances: The XPLR-XPLT Movement Spectrum Cover

Neural Mechanisms of Organism-Dependent Affordances: The XPLR-XPLT Movement Spectrum

Open Access
|Dec 2025

References

  1. Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 34B(2), 77–98. https://doi.org/10.1080/14640748208400878
  2. Ariani, G., & Diedrichsen, J. (2019). Sequence learning is driven by improvements in motor planning. Journal of Neurophysiology, 121(6), 2088–2100. https://doi.org/10.1152/jn.00041.2019
  3. Baggs, E., & Chemero, A. (2019). The Third Sense of Environment. In Perception as Information Detection. Routledge.
  4. Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 48–69. https://doi.org/10.1038/npp.2009.131
  5. Bangert, M., Wiedemann, A., & Jabusch, H.-C. (2014). Effects of variability of practice in music: A pilot study on fast goal-directed movements in pianists. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00598
  6. Barbosa, T. M., Bartolomeu, R., Morais, J. E., & Costa, M. J. (2019). Skillful Swimming in Age-Groups Is Determined by Anthropometrics, Biomechanics and Energetics. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00073
  7. Barzyk, P., & Gruber, M. (2024). Motor learning in golf – A systematic review. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1324615
  8. Basile, G. A., Bertino, S., Bramanti, A., Ciurleo, R., Anastasi, G. P., Milardi, D., & Cacciola, A. (2021). Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior. European Journal of Histo-chemistry: EJH, 65(Suppl 1), 3284. https://doi.org/10.4081/ejh.2021.3284
  9. Baumann, M. A., Fluet, M.–C., & Scherberger, H. (2009). Context-Specific Grasp Movement Representation in the Macaque Anterior Intraparietal Area. Journal of Neuroscience, 29(20), 6436–6448. https://doi.org/10.1523/JNEUROSCI.5479-08.2009
  10. Beers, R. J. van, Meer, Y. van der, & Veerman, R. M. (2013). What Autocorrelation Tells Us about Motor Variability: Insights from Dart Throwing. PLOS ONE, 8(5), e64332. https://doi.org/10.1371/journal.pone.0064332
  11. Berlot, E., Popp, N. J., & Diedrichsen, J. (2020). A critical re-evaluation of fMRI signatures of motor sequence learning. eLife, 9, e55241. https://doi.org/10.7554/eLife.55241
  12. Blau, J. J. C., & Wagman, J. B. (2022). Introduction to Ecological Psychology: A Lawful Approach to Perceiving, Acting, and Cognizing (1st ed.). Routledge. https://doi.org/10.4324/9781003145691
  13. Bratman, M. (1987). Intention, Plans, and Practical Reason. MA: Harvard University Press.
  14. Bruineberg, J., Rietveld, E., Parr, T., Van Maanen, L., & Friston, K. (2018). Free-energy minimization in joint agent-environment systems: A niche construction perspective. Journal of Theoretical Biology, 455, 161–178. https://doi.org/10.1016/j.jtbi.2018.07.002
  15. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex (New York, N.Y.: 1991), 15(8), 1243–1249. https://doi.org/10.1093/cercor/bhi007
  16. Cameron, D. J., & Grahn, J. A. (2014). Enhanced timing abilities in percussionists generalize to rhythms without a musical beat. Frontiers in Human Neuro-science, 8. https://doi.org/10.3389/fnhum.2014.01003
  17. Chemero, A. (2003). An Outline of a Theory of Affordances. Ecological Psychology, 15(2), 181–195. https://doi.org/10.1207/S15326969ECO15025
  18. Chemero, A. (2009). Radical embodied cognitive science (pp. xiv, 252). MIT Press.
  19. Chong, I., & Proctor, R. W. (2020). On the evolution of a radical concept: Affordances according to Gibson and their subsequent use and development. Perspectives on Psychological Science, 15(1), 117–132. https://doi.org/10.1177/1745691619868207
  20. Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1585–1599. https://doi.org/10.1098/rstb.2007.2054
  21. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298. https://doi.org/10.1146/annurev.neuro.051508.135409
  22. Constant, A., Clark, A., & Friston, K. (2021). Representation Wars: Enacting an Armistice Through Active Inference. Frontiers in Psychology, 11, 598733. https://doi.org/10.3389/fpsyg.2020.598733
  23. Davidson, D. (1963). Actions, Reasons, and Causes. The Journal of Philosophy, 60(23), 685. https://doi.org/10.2307/2023177
  24. Daw, N. D., Courville, A. C., & Touretzky, D. S. (2006). Representation and Timing in Theories of the Dopamine System. Neural Computation, 18(7), 1637–1677. https://doi.org/10.1162/neco.2006.18.7.1637
  25. Debas, K., Carrier, J., Orban, P., Barakat, M., Lungu, O., Vandewalle, G., Tahar, A. H., Bellec, P., Karni, A., Ungerleider, L. G., Benali, H., & Doyon, J. (2010). Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proceedings of the National Academy of Sciences, 107(41), 17839–17844. https://doi.org/10.1073/pnas.1013176107
  26. Desrochers, T. M., Chatham, C. H., & Badre, D. (2015). The Necessity of Rostrolateral Prefrontal Cortex for Higher-Level Sequential Behavior. Neuron, 87(6), 1357–1368. https://doi.org/10.1016/j.neuron.2015.08.026
  27. Dewey, J. (1922). Human nature and conduct: An introduction to social psychology (pp. vii, 336). Henry Holt and Company. https://doi.org/10.1037/14663-000
  28. Dolan, R. J., & Dayan, P. (2013). Goals and Habits in the Brain. Neuron, 80(2), 312–325. https://doi.org/10.1016/j.neuron.2013.09.007
  29. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199(1), 61–75. https://doi.org/10.1016/j.bbr.2008.11.012
  30. Gallagher, S. (2005). How the Body Shapes the Mind. Oxford University Press. https://doi.org/10.1093/0199271941.001.0001
  31. Gallagher, S. (2023). Embodied and enactive approaches to cognition. Cambridge University Press.
  32. Gibson, J. J. (1979). The ecological approach to visual perception: Classic edition. Psychology press.
  33. Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193(2), 559–582. https://doi.org/10.1007/s11229-015-0762-9
  34. Hohwy, J. (2013). The Predictive Mind. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199682737.001.0001
  35. Hohwy, J. (2016). The Self-Evidencing Brain: The Self-Evidencing Brain. Noûs, 50(2), 259–285. https://doi.org/10.1111/nous.12062
  36. Husserl, E. (2012). Ideas: General Introduction to Pure Phenomenology. Routledge. https://doi.org/10.4324/9780203120330
  37. Jabusch, H.-C., Alpers, H., Kopiez, R., Vauth, H., & Altenmüller, E. (2009). The influence of practice on the development of motor skills in pianists: A longitudinal study in a selected motor task. Human Movement Science, 28(1), 74–84. https://doi.org/10.1016/j.humov.2008.08.001
  38. James, W. (2007). The Principles of Psychology. THE PRINCIPLES OF PSYCHOLOGY.
  39. Janacsek, K., Shattuck, K. F., Tagarelli, K. M., Lum, J. A. G., Turkeltaub, P. E., & Ullman, M. T. (2020). Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. NeuroImage, 207, 116387. https://doi.org/10.1016/j.neuroimage.2019.116387
  40. Karim, H. T., Huppert, T. J., Erickson, K. I., Wollam, M. E., Sparto, P. J., Sejdić, E., & VanSwearingen, J. M. (2017). Motor sequence learning-induced neural efficiency in functional brain connectivity. Behavioural Brain Research, 319, 87–95. https://doi.org/10.1016/j.bbr.2016.11.021
  41. Kilchenmann, L., & Senn, O. (2015). Microtiming in Swing and Funk affects the body movement behavior of music expert listeners. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01232
  42. Kirlik, A. (2004). On Stoffregen’s definition of affordances. Ecological Psychology, 16(1), 73–77. https://doi.org/10.1207/s15326969eco160110
  43. Lampe, R., Thienel, A., Mitternacht, J., Blumenstein, T., Turova, V., & Alves-Pinto, A. (2015). Piano training in youths with hand motor impairments after damage to the developing brain. Neuropsychiatric Disease and Treatment, 11, 1929–1938. https://doi.org/10.2147/NDT.S84090
  44. Lappi, O., Lehtonen, E., Pekkanen, J., & Itkonen, T. (2013). Beyond the tangent point: Gaze targets in naturalistic driving. Journal of Vision, 13(13), 11. https://doi.org/10.1167/13.13.11
  45. Ma, F., Lin, H., & Zhou, J. (2025). Prediction, inference, and generalization in orbitofrontal cortex. Current Biology, 35(7), R266–R272. https://doi.org/10.1016/j.cub.2025.02.021
  46. Malo, R., & Prié, Y. (2024). Reaching conceptual stability by re-articulating empirical and theoretical work on affordances. Frontiers in Psychology, 15. https://doi.org/10.3389/fpsyg.2024.1283168
  47. Merleau-Ponty, M. (2013). Phenomenology of Perception. Routledge. https://doi.org/10.4324/9780203720714
  48. Michaels, C. F., & Carello, C. (1981). Direct perception. Prentice-Hall Englewood Cliffs, NJ.
  49. Mylopoulos, M., & Pacherie, E. (2019). Intentions: The dynamic hierarchical model revisited. WIREs Cognitive Science, 10(2), e1481. https://doi.org/10.1002/wcs.1481
  50. Nasu, D., Matsuo, T., & Kadota, K. (2014). Two Types of Motor Strategy for Accurate Dart Throwing. PLOS ONE, 9(2), e88536. https://doi.org/10.1371/journal.pone.0088536
  51. Norman, D. A. (2013). The design of everyday things (Revised and expanded edition). Basic Books.
  52. Olszewska, A. M., Gaca, M., Droździel, D., Widlarz, A., Herman, A. M., & Marchewka, A. (2024). Understanding functional brain reorganization for naturalistic piano playing in novice pianists. Journal of Neuroscience Research, 102(2), e25312. https://doi.org/10.1002/jnr.25312
  53. Olszewska, A. M., Gaca, M., Herman, A. M., Jednoróg, K., & Marchewka, A. (2021). How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.630829
  54. Pacherie, E. (2006). Toward a Dynamic Theory of Intentions. In Does consciousness cause behavior? (pp. 145–167). Boston Review. https://doi.org/10.7551/mitpress/9780262162371.003.0009
  55. Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179–217. https://doi.org/10.1016/j.cognition.2007.09.003
  56. Pezzulo, G., Barca, L., Bocconi, A. L., & Borghi, A. M. (2010). When affordances climb into your mind: Advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain and Cognition, 73(1), 68–73. https://doi.org/10.1016/j.bandc.2010.03.002
  57. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Book-heimer, S. Y., & Knowlton, B. J. (2005). The Neural Correlates of Motor Skill Automaticity. Journal of Neuroscience, 25(22), 5356–5364. https://doi.org/10.1523/JNEUROSCI.3880-04.2005
  58. Rietveld, E., Denys, D., & van Westen, M. (2018). Ecological-enactive cognition as engaging with a field of relevant affordances, the skilled intentionality framework (SIF). In Oxford Handbook of 4E cognition. Oxford University Press.
  59. Rietveld, E., & Kiverstein, J. (2014). A Rich Landscape of Affordances. Ecological Psychology, 26(4), 325–352. https://doi.org/10.1080/10407413.2014.958035
  60. Rudebeck, P. H., & Murray, E. A. (2014). The Orbitofrontal Oracle: Cortical Mechanisms for the Prediction and Evaluation of Specific Behavioral Outcomes. Neuron, 84(6), 1143–1156. https://doi.org/10.1016/j.neuron.2014.10.049
  61. Ryle, G. (1949). The concept of mind (pp. vi, 334). Barnes & Noble.
  62. Santos, C. C., Marinho, D. A., & Costa, M. J. (2024). Changes in Young Swimmers’ In-Water Force, Performance, Kinematics, and Anthropometrics over a Full Competitive Season. Journal of Human Kinetics, 93, 5–15. https://doi.org/10.5114/jhk/183065
  63. Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5(7), 532–545. https://doi.org/10.1038/nrn1427
  64. Searle, J. R. (1983). Intentionality, an essay in the philosophy of mind. Cambridge University Press.
  65. Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. R., & Schoenbaum, G. (2010). Neural correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial striatum. Frontiers in Integrative Neuroscience, 4. https://doi.org/10.3389/fnint.2010.00012
  66. Stoffregen, T. A. (2003). Affordances as Properties of the Animal-Environment System. Ecological Psychology, 15(2), 115–134. https://doi.org/10.1207/S15326969ECO15022
  67. Stoffregen, T. A., & Wagman, J. B. (2025). Higher order affordances. Psychonomic Bulletin & Review, 32(1), 1–30. https://doi.org/10.3758/s13423-024-02535-y
  68. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Second edition). The MIT Press.
  69. Turvey, M. T. (1992). Affordances and prospective control: An outline of the ontology. Ecological Psychology, 4(3), 173–187. https://doi.org/10.1207/s15326969eco04033
  70. Valyear, K. F., & Frey, S. H. (2015). Human posterior parietal cortex mediates hand-specific planning. NeuroImage, 114, 226–238. https://doi.org/10.1016/j.neuroimage.2015.03.058
  71. Van Dijk, L. (2021). Affordances in a Multispecies Entanglement. Ecological Psychology, 33(2), 73–89. https://doi.org/10.1080/10407413.2021.1885978
  72. Voelcker-Rehage, C. (2008). Motor-skill learning in older adults – A review of studies on age-related differences. European Review of Aging and Physical Activity, 5(1), 5–16. https://doi.org/10.1007/s11556-008-0030-9
  73. Wang, B. A., Veismann, M., Banerjee, A., & Pleger, B. (2023). Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations. Nature Communications, 14(1), 3552. https://doi.org/10.1038/s41467-023-38671-7
  74. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683–703. https://doi.org/10.1037/0096-1523.10.5.683
  75. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal Cortex as a Cognitive Map of Task Space. Neuron, 81(2), 267–279. https://doi.org/10.1016/j.neuron.2013.11.005
  76. Wittgenstein, L. (2009). Philosophical Investigations. John Wiley & Sons.
  77. Yin, H., Knowlton, B., & Balleine. (2006). Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behavioural Brain Research, 166(2), 189–196. https://doi.org/10.1016/j.bbr.2005.07.012
  78. Yin, H., Ostlund, S. B., Knowlton, B. J., & Balleine. (2005). The role of the dorsomedial striatum in instrumental conditioning: Striatum and instrumental conditioning. European Journal of Neuroscience, 22(2), 513–523. https://doi.org/10.1111/j.1460-9568.2005.04218.x
DOI: https://doi.org/10.2478/slgr-2025-0041 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 799 - 824
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Olgierd Borowiecki, published by University of Białystok
This work is licensed under the Creative Commons Attribution 4.0 License.