Have a personal or library account? Click to login
Integration of Biosemiotics and Genetic Algorithms Cover

Integration of Biosemiotics and Genetic Algorithms

Open Access
|Nov 2025

References

  1. Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390–1396. https://doi.org/10.1126/science.7466396
  2. Barbieri, M. (2001). The organic codes: An introduction to semantic biology. Cambridge University Press.
  3. Barbieri, M. (2008). Biosemiotics: A new understanding of life. Cosmos and History: The Journal of Natural and Social Philosophy, 4(1–2), 29–45.
  4. Belciug, S., & Gorunescu, F. (2013). A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence. Expert Systems, 30.
  5. Bruno, D., Marranghello, N., Osório, F., & Pereira, A. (2018). Neurogenetic algorithm applied to route planning for autonomous mobile robots. 2018 International Joint Conference on Neural Networks, 1–8.
  6. Burkhart, M. C., & Ruiz, G. (2023). Neuroevolutionary representations for learning heterogeneous treatment e ects. Journal of Computational Science, 71, 102054. https://doi.org/10.1016/j.jocs.2023.102054
  7. Chen, Y., & Li, Z. (2012). The design and analysis of an improved parallel genetic algorithm based on distributed system. Proceedings of the International Conference on Emerging Mechatronics and Information Technology, 11–15.
  8. Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.
  9. Dmitriu, T., Lotton, C. H., et al. (2014). Genetic information transfer promotes cooperation in bacteria. Proceedings of the National Academy of Sciences, 111(30), 11103–11108. https://doi.org/10.1073/pnas.1410750111
  10. Dimitriu, T., Matthews, A. C., & Buckling, A. (2014). Increased horizontal gene transfer as a mechanism for adaptation to novel selective pressures in bacteria. Proceedings of the Royal Society B, 281(1794), 20132920. https://doi.org/10.1098/rspb.2013.2920
  11. Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer.
  12. Favareau, D. (Ed.). (2010). Essential readings in biosemiotics: Anthology and commentary (Biosemiotics 3). Springer.
  13. Fogel, D. B. (2006). Evolutionary computation: Toward a new philosophy of machine intelligence. Wiley.
  14. Gerges, F., Zouein, G., & Azar, D. (2018). Genetic algorithms with local optima handling to solve sudoku puzzles. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence (ICCAI), 19–22. https://doi.org/10.1145/3194452.3194463
  15. Gildenhuys, P. (2024). Natural selection. In E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 Edition).
  16. Goñi-Moreno,Á., & Nikel, P. (2019). High-performance biocomputing in synthetic biology-Integrated transcriptional and metabolic circuits. Frontiers in Bio-engineering and Biotechnology.
  17. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
  18. Hoffmeyer, J. (2008). Biosemiotics: An examination into the signs of life and the life of signs. Scranton University Press.
  19. Hoffmeyer, J., & Kull, K. (2003). Baldwin and biosemiotics: What intelligence is for. In B. H. Weber & D. J. Depew (Eds.), Evolution and learning: The Baldwin effect reconsidered (pp. 253–272). MIT Press.
  20. Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.
  21. Jalasvuori, M. (2012). Vehicles, replicators, and intercellular movement of genetic information: Evolutionary dissection of a bacterial cell. International Journal of Evolutionary Biology, 2012(1). https://doi.org/10.1155/2012/462949
  22. Josyula, M. (2022). Using genetic algorithms to simulate evolution. arXiv: Adaptation and Self-Organizing Systems.
  23. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511623486
  24. Kłóś, A., & Płonka, P. M. (2021). The semiotic approach to bacterial chemotaxis. Biosemiotics, 14(2), 265–280. https://doi.org/10.1007/s12304-021-09407-4
  25. Kull, K. (2005). Semiosphere and a dual ecology: Paradoxes of communication. Sign Systems Studies, 33(1), 175–189.
  26. Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., & Jin, Y. (2023). Survey on evolutionary deep learning: Principles, algorithms, applications, and open issues. ACM Computing Surveys, 56(2).
  27. Li, Q., Queralta, J., Gia, T., Zou, Z., & Westerlund, T. (2020). Multi-sensor fusion for navigation and mapping in autonomous vehicles: Accurate localization in urban environments.
  28. Lund, P. A. (2001). Microbial molecular chaperones. Advances in Microbial Physiology, 44, 93–140. https://doi.org/10.1016/S0065-2911(01)44015-3
  29. Maldonado, C., & Gómez-Cruz, N. (2012). Biological hypercomputation: A concept is introduced. arXiv: Adaptation and Self-Organizing Systems.
  30. Mayer, M. P. (2021). Hsp70 chaperone machines. Annual Review of Biophysics, 50, 1–30. https://doi.org/10.1146/annurev-biophys-090320-084514
  31. Miikkulainen, R., & Forrest, S. (2021). A biological perspective on evolutionary computation. Nature Machine Intelligence, 3, 9–15.
  32. Morrison, R. W., & De Jong, K. A. (2000). Triggered hypermutation revisited. Proceedings of the‘ 2000 Congress on Evolutionary Computation, 1025–1032.
  33. Piccinini, G., & Maley, C. (2021). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2021 Edition). Retrieved from https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems/
  34. Sharov, A. A., Maran, T., & Tønnessen, M. (2016). Organisms, agency, and evolution. Biosemiotics, 9(1), 1–16. https://doi.org/10.1007/s12304-016-9245-4
  35. Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 225–274. https://doi.org/10.1016/0022-5193(67)90079-3
  36. Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787–792.
  37. Thompson, J. (2023). Genetic algorithms and applications. In A. J. Kulkarni & A. H. Gandomi (Eds.), Handbook of formal optimization (pp. 1–30). Springer. https://doi.org/10.1007/978-981-19-8851-6_30-1
  38. Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem.
  39. Uexküll, J. von. (1934). Streifzüge durch die Umwelten von Tieren und Menschen.
  40. Watson, R. A., Buckley, C. L., & Mills, R. (2002). Symbiotic combination as an alternative to sexual recombination in genetic algorithms. Proceedings of the 2002 Congress on Evolutionary Computation, 1, 1415–1420.
  41. Yang, S. (2005). Memory-based immigrants for genetic algorithms in dynamic environments. Proceedings of the 2005 Genetic and Evolutionary Computation Conference, 2, 1115–1122.
  42. Yong, H. S., Lim, Y. P., & Lee, Y. H. (2008). Genetic algorithm with coevolution and multiple subpopulations. Advances in Intelligent Systems and Computing, 47, 317–325. https://doi.org/10.1007/978-3-540-69766-3_43
DOI: https://doi.org/10.2478/slgr-2025-0015 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 283 - 298
Published on: Nov 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Anna Sarosiek, Roman Krzanowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution 4.0 License.