References
- Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390–1396. https://doi.org/10.1126/science.7466396
- Barbieri, M. (2001). The organic codes: An introduction to semantic biology. Cambridge University Press.
- Barbieri, M. (2008). Biosemiotics: A new understanding of life. Cosmos and History: The Journal of Natural and Social Philosophy, 4(1–2), 29–45.
- Belciug, S., & Gorunescu, F. (2013). A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence. Expert Systems, 30.
- Bruno, D., Marranghello, N., Osório, F., & Pereira, A. (2018). Neurogenetic algorithm applied to route planning for autonomous mobile robots. 2018 International Joint Conference on Neural Networks, 1–8.
- Burkhart, M. C., & Ruiz, G. (2023). Neuroevolutionary representations for learning heterogeneous treatment e ects. Journal of Computational Science, 71, 102054. https://doi.org/10.1016/j.jocs.2023.102054
- Chen, Y., & Li, Z. (2012). The design and analysis of an improved parallel genetic algorithm based on distributed system. Proceedings of the International Conference on Emerging Mechatronics and Information Technology, 11–15.
- Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.
- Dmitriu, T., Lotton, C. H., et al. (2014). Genetic information transfer promotes cooperation in bacteria. Proceedings of the National Academy of Sciences, 111(30), 11103–11108. https://doi.org/10.1073/pnas.1410750111
- Dimitriu, T., Matthews, A. C., & Buckling, A. (2014). Increased horizontal gene transfer as a mechanism for adaptation to novel selective pressures in bacteria. Proceedings of the Royal Society B, 281(1794), 20132920. https://doi.org/10.1098/rspb.2013.2920
- Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer.
- Favareau, D. (Ed.). (2010). Essential readings in biosemiotics: Anthology and commentary (Biosemiotics 3). Springer.
- Fogel, D. B. (2006). Evolutionary computation: Toward a new philosophy of machine intelligence. Wiley.
- Gerges, F., Zouein, G., & Azar, D. (2018). Genetic algorithms with local optima handling to solve sudoku puzzles. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence (ICCAI), 19–22. https://doi.org/10.1145/3194452.3194463
- Gildenhuys, P. (2024). Natural selection. In E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 Edition).
- Goñi-Moreno,Á., & Nikel, P. (2019). High-performance biocomputing in synthetic biology-Integrated transcriptional and metabolic circuits. Frontiers in Bio-engineering and Biotechnology.
- Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
- Hoffmeyer, J. (2008). Biosemiotics: An examination into the signs of life and the life of signs. Scranton University Press.
- Hoffmeyer, J., & Kull, K. (2003). Baldwin and biosemiotics: What intelligence is for. In B. H. Weber & D. J. Depew (Eds.), Evolution and learning: The Baldwin effect reconsidered (pp. 253–272). MIT Press.
- Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.
- Jalasvuori, M. (2012). Vehicles, replicators, and intercellular movement of genetic information: Evolutionary dissection of a bacterial cell. International Journal of Evolutionary Biology, 2012(1). https://doi.org/10.1155/2012/462949
- Josyula, M. (2022). Using genetic algorithms to simulate evolution. arXiv: Adaptation and Self-Organizing Systems.
- Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511623486
- Kłóś, A., & Płonka, P. M. (2021). The semiotic approach to bacterial chemotaxis. Biosemiotics, 14(2), 265–280. https://doi.org/10.1007/s12304-021-09407-4
- Kull, K. (2005). Semiosphere and a dual ecology: Paradoxes of communication. Sign Systems Studies, 33(1), 175–189.
- Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., & Jin, Y. (2023). Survey on evolutionary deep learning: Principles, algorithms, applications, and open issues. ACM Computing Surveys, 56(2).
- Li, Q., Queralta, J., Gia, T., Zou, Z., & Westerlund, T. (2020). Multi-sensor fusion for navigation and mapping in autonomous vehicles: Accurate localization in urban environments.
- Lund, P. A. (2001). Microbial molecular chaperones. Advances in Microbial Physiology, 44, 93–140. https://doi.org/10.1016/S0065-2911(01)44015-3
- Maldonado, C., & Gómez-Cruz, N. (2012). Biological hypercomputation: A concept is introduced. arXiv: Adaptation and Self-Organizing Systems.
- Mayer, M. P. (2021). Hsp70 chaperone machines. Annual Review of Biophysics, 50, 1–30. https://doi.org/10.1146/annurev-biophys-090320-084514
- Miikkulainen, R., & Forrest, S. (2021). A biological perspective on evolutionary computation. Nature Machine Intelligence, 3, 9–15.
- Morrison, R. W., & De Jong, K. A. (2000). Triggered hypermutation revisited. Proceedings of the‘ 2000 Congress on Evolutionary Computation, 1025–1032.
- Piccinini, G., & Maley, C. (2021). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2021 Edition). Retrieved from https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems/
- Sharov, A. A., Maran, T., & Tønnessen, M. (2016). Organisms, agency, and evolution. Biosemiotics, 9(1), 1–16. https://doi.org/10.1007/s12304-016-9245-4
- Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 225–274. https://doi.org/10.1016/0022-5193(67)90079-3
- Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787–792.
- Thompson, J. (2023). Genetic algorithms and applications. In A. J. Kulkarni & A. H. Gandomi (Eds.), Handbook of formal optimization (pp. 1–30). Springer. https://doi.org/10.1007/978-981-19-8851-6_30-1
- Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem.
- Uexküll, J. von. (1934). Streifzüge durch die Umwelten von Tieren und Menschen.
- Watson, R. A., Buckley, C. L., & Mills, R. (2002). Symbiotic combination as an alternative to sexual recombination in genetic algorithms. Proceedings of the 2002 Congress on Evolutionary Computation, 1, 1415–1420.
- Yang, S. (2005). Memory-based immigrants for genetic algorithms in dynamic environments. Proceedings of the 2005 Genetic and Evolutionary Computation Conference, 2, 1115–1122.
- Yong, H. S., Lim, Y. P., & Lee, Y. H. (2008). Genetic algorithm with coevolution and multiple subpopulations. Advances in Intelligent Systems and Computing, 47, 317–325. https://doi.org/10.1007/978-3-540-69766-3_43